Skip to main content

Sedimentation and Laser Light Scattering Methods for Quantifying Synthetic Tau Aggregation Propensity

  • Protocol
  • First Online:
Tau Protein

Abstract

Tau aggregation assays detect and quantify the conversion of soluble tau monomers into species having filamentous or oligomeric structure. Assays for filamentous aggregates in cross-β-sheet conformation leverage optical, biochemical, or biophysical methods, each with their own advantages and throughput capacity. Here we provide protocols for two medium-throughput assays based on sedimentation and laser light scattering and compare their performance, their utility for characterizing tau aggregation dynamics, and their limitations relative to other approaches. Additionally, a protocol for transmission electron microscopy analysis is updated so as to be compatible with the truncated tau variants that have emerged as powerful tools for interrogating the structural basis of tau polymorphism. Together these methods contribute to a rich tool kit for interrogating tau aggregation kinetics and propensity over a wide range of experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scheres SH, Zhang W, Falcon B, Goedert M (2020) Cryo-EM structures of tau filaments. Curr Opin Struct Biol 64:17–25

    Article  CAS  PubMed  Google Scholar 

  2. Shi Y, Zhang W, Yang Y, Murzin AG, Falcon B, Kotecha A, van Beers M, Tarutani A, Kametani F, Garringer HJ, Vidal R, Hallinan GI, Lashley T, Saito Y, Murayama S, Yoshida M, Tanaka H, Kakita A, Ikeuchi T, Robinson AC, Mann DMA, Kovacs GG, Revesz T, Ghetti B, Hasegawa M, Goedert M, Scheres SHW (2021) Structure-based classification of tauopathies. Nature

    Google Scholar 

  3. Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA (1996) Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383:550–553

    Article  CAS  PubMed  Google Scholar 

  4. Perez M, Valpuesta JM, Medina M, Montejo de Garcini E, Avila J (1996) Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction. J Neurochem 67:1183–1190

    Article  CAS  PubMed  Google Scholar 

  5. Friedhoff P, Schneider A, Mandelkow EM, Mandelkow E (1998) Rapid assembly of Alzheimer-like paired helical filaments from microtubule-associated protein tau monitored by fluorescence in solution. Biochemistry 37:10223–10230

    Article  CAS  PubMed  Google Scholar 

  6. Kampers T, Friedhoff P, Biernat J, Mandelkow EM, Mandelkow E (1996) RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Lett 399:344–349

    Article  CAS  PubMed  Google Scholar 

  7. Chirita CN, Necula M, Kuret J (2003) Anionic micelles and vesicles induce tau fibrillization in vitro. J Biol Chem 278:25644–25650

    Article  CAS  PubMed  Google Scholar 

  8. Chirita CN, Congdon EE, Yin H, Kuret J (2005) Triggers of full-length tau aggregation: a role for partially folded intermediates. Biochemistry 44:5862–5872

    Article  CAS  PubMed  Google Scholar 

  9. Huseby CJ, Kuret J (2016) Analyzing Tau aggregation with electron microscopy. Methods Mol Biol 1345:101–112

    Article  CAS  PubMed  Google Scholar 

  10. Huseby CJ, Bundschuh R, Kuret J (2019) The role of annealing and fragmentation in human Tau aggregation dynamics. J Biol Chem 294:4728–4737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carlomagno Y, Manne S, DeTure M, Prudencio M, Zhang YJ, Hanna Al-Shaikh R, Dunmore JA, Daughrity LM, Song Y, Castanedes-Casey M, Lewis-Tuffin LJ, Nicholson KA, Wszolek ZK, Dickson DW, Fitzpatrick AWP, Petrucelli L, Cook CN (2021) The AD tau core spontaneously self-assembles and recruits full-length tau to filaments. Cell Rep 34:108843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Al-Hilaly YK, Pollack SJ, Vadukul DM, Citossi F, Rickard JE, Simpson M, Storey JMD, Harrington CR, Wischik CM, Serpell LC (2017) Alzheimer’s disease-like paired helical filament assembly from truncated tau protein is independent of disulfide crosslinking. J Mol Biol 429:3650–3665

    Article  CAS  PubMed  Google Scholar 

  13. Meisl G, Kirkegaard JB, Arosio P, Michaels TC, Vendruscolo M, Dobson CM, Linse S, Knowles TP (2016) Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat Protoc 11:252–272

    Article  CAS  PubMed  Google Scholar 

  14. Zhong Q, Congdon EE, Nagaraja HN, Kuret J (2012) Tau isoform composition influences rate and extent of filament formation. J Biol Chem 287:20711–20719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Congdon EE, Kim S, Bonchak J, Songrug T, Matzavinos A, Kuret J (2008) Nucleation-dependent tau filament formation: the importance of dimerization and an estimation of elementary rate constants. J Biol Chem 283:13806–13816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alonso AC, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2:783–787

    Article  CAS  PubMed  Google Scholar 

  17. Naiki H, Higuchi K, Hosokawa M, Takeda T (1989) Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T. Anal Biochem 177:244–249

    Article  CAS  PubMed  Google Scholar 

  18. Crowe A, Huang W, Ballatore C, Johnson RL, Hogan AM, Huang R, Wichterman J, McCoy J, Huryn D, Auld DS, Smith AB 3rd, Inglese J, Trojanowski JQ, Austin CP, Brunden KR, Lee VM (2009) Identification of aminothienopyridazine inhibitors of tau assembly by quantitative high-throughput screening. Biochemistry 48:7732–7745

    Article  CAS  PubMed  Google Scholar 

  19. Crowe A, Ballatore C, Hyde E, Trojanowski JQ, Lee VM (2007) High throughput screening for small molecule inhibitors of heparin-induced tau fibril formation. Biochem Biophys Res Comm 358:1–6

    Article  CAS  PubMed  Google Scholar 

  20. Chang E, Congdon EE, Honson NS, Duff KE, Kuret J (2009) Structure-activity relationship of cyanine tau aggregation inhibitors. J Med Chem 52:3539–3547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chang E, Kuret J (2008) Detection and quantification of tau aggregation using a membrane filter assay. Anal Biochem 373:330–336

    Article  CAS  PubMed  Google Scholar 

  22. Scarff CA, Fuller MJG, Thompson RF, Iadanza MG (2018) Variations on negative stain electron microscopy methods: tools for tackling challenging systems. J Vis Exp JoVE 57199

    Google Scholar 

  23. Ramachandran G (2017) Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) for study of the kinetics of formation and structural characterization of tau fibrils. Methods Mol Biol 1523:113–128

    Article  CAS  PubMed  Google Scholar 

  24. Nanavaty N, Lin L, Hinckley SH, Kuret J (2017) Detection and quantification methods for fibrillar products of in vitro tau aggregation assays. In: Smet-Nocca C (ed) Tau protein: methods and protocols. Springer, New York, pp 101–111

    Chapter  Google Scholar 

  25. Schein CH (1990) Solubility as a function of protein structure and solvent components. Biotechnology (N. Y) 8:308–317

    CAS  PubMed  Google Scholar 

  26. Gamblin TC, King ME, Dawson H, Vitek MP, Kuret J, Berry RW, Binder LI (2000) In vitro polymerization of tau protein monitored by laser light scattering: method and application to the study of FTDP-17 mutants. Biochemistry 39:6136–6144

    Article  CAS  PubMed  Google Scholar 

  27. Necula M, Kuret J (2004) A static laser light scattering assay for surfactant-induced tau fibrillization. Anal Biochem 333:205–215

    Article  CAS  PubMed  Google Scholar 

  28. Mukrasch MD, Biernat J, von Bergen M, Griesinger C, Mandelkow E, Zweckstetter M (2005) Sites of tau important for aggregation populate b-structure and bind to microtubules and polyanions. J Biol Chem 280:24978–24986

    Article  CAS  PubMed  Google Scholar 

  29. Nanavaty N, Lin L, Hinckley SH, Kuret J (2017) Detection and quantification methods for fibrillar products of in vitro tau aggregation assays. Methods Mol Biol 1523:101–111

    Article  CAS  PubMed  Google Scholar 

  30. KrishnaKumar VG, Gupta S (2017) Simplified method to obtain enhanced expression of tau protein from E. coli and one-step purification by direct boiling. Prep Biochem Biotechnol 47:530–538

    Article  CAS  PubMed  Google Scholar 

  31. Carmel G, Mager EM, Binder LI, Kuret J (1996) The structural basis of monoclonal antibody Alz50’s selectivity for Alzheimer’s disease pathology. J Biol Chem 271:32789–32795

    Article  CAS  PubMed  Google Scholar 

  32. Margittai M, Langen R (2006) Spin labeling analysis of amyloids and other protein aggregates. Methods Enzymol 413:122–139

    Article  CAS  PubMed  Google Scholar 

  33. Barghorn S, Biernat J, Mandelkow E (2005) Purification of recombinant tau protein and preparation of Alzheimer-paired helical filaments in vitro. Methods Mol Biol 299:35–51

    CAS  PubMed  Google Scholar 

  34. Carlson SW, Branden M, Voss K, Sun Q, Rankin CA, Gamblin TC (2007) A complex mechanism for inducer mediated tau polymerization. Biochemistry 46:8838–8849

    Article  CAS  PubMed  Google Scholar 

  35. Mutreja Y, Gamblin TC (2017) Optimization of in vitro conditions to study the arachidonic acid induction of 4R isoforms of the microtubule-associated protein tau. Methods Cell Biol 141:65–88

    Article  CAS  PubMed  Google Scholar 

  36. Gallagher SR (2012) One-dimensional SDS gel electrophoresis of proteins. Curr Protoc Protein Sci. Chapter 10, Unit 10 11 11–44

    Google Scholar 

  37. Sasse J, Gallagher SR (2009) Staining proteins in gels. Curr Protoc Mol Biol. Chapter 10, Unit 10 16

    Google Scholar 

  38. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rasband WS (1997–2018) ImageJ. National Institutes of Health, Bethesda

    Google Scholar 

  40. Vincent SG, Cunningham PR, Stephens NL, Halayko AJ, Fisher JT (1997) Quantitative densitometry of proteins stained with coomassie blue using a Hewlett Packard scanjet scanner and Scanplot software. Electrophoresis 18:67–71

    Article  CAS  PubMed  Google Scholar 

  41. Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9:4225–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gassmann M, Grenacher B, Rohde B, Vogel J (2009) Quantifying Western blots: pitfalls of densitometry. Electrophoresis 30:1845–1855

    Article  CAS  PubMed  Google Scholar 

  43. von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000) Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming b structure. Proc Natl Acad Sci U S A 97:5129–5134

    Article  Google Scholar 

  44. von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow EM, Mandelkow E (2001) Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local b-structure. J Biol Chem 276:48165–48174

    Article  Google Scholar 

  45. Sarthy J, Gamblin TC (2006) A light scattering assay for arachidonic acid-induced tau fibrillization without interfering micellization. Anal Biochem 353:150–152

    Article  CAS  PubMed  Google Scholar 

  46. Zhang W, Falcon B, Murzin AG, Fan J, Crowther RA, Goedert M, Scheres SH (2019) Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s diseases. eLife:8

    Google Scholar 

  47. Necula M, Kuret J (2004) Pseudophosphorylation and glycation of tau protein enhance but do not trigger fibrillization in vitro. J Biol Chem 279:49694–49703

    Article  CAS  PubMed  Google Scholar 

  48. Chirita CN, Kuret J (2004) Evidence for an intermediate in tau filament formation. Biochemistry 43:1704–1714

    Article  CAS  PubMed  Google Scholar 

  49. Rodriguez Camargo DC, Sileikis E, Chia S, Axell E, Bernfur K, Cataldi RL, Cohen SIA, Meisl G, Habchi J, Knowles TPJ, Vendruscolo M, Linse S (2021) Proliferation of Tau 304-380 fragment aggregates through autocatalytic secondary nucleation. ACS Chem Neurosci 12:4406–4415

    Article  CAS  PubMed  Google Scholar 

  50. Honson NS, Johnson RL, Huang W, Inglese J, Austin CP, Kuret J (2007) Differentiating Alzheimer disease-associated aggregates with small molecules. Neurobiol Dis 28:251–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sui D, Liu M, Kuo MH (2015) In vitro aggregation assays using hyperphosphorylated tau protein. J Vis Exp e51537

    Google Scholar 

  52. Paranjape SR, Riley AP, Somoza AD, Oakley CE, Wang CC, Prisinzano TE, Oakley BR, Gamblin TC (2015) Azaphilones inhibit tau aggregation and dissolve tau aggregates in vitro. ACS Chem Neurosci 6:751–760

    Article  CAS  PubMed  Google Scholar 

  53. Necula M, Kuret J (2004) Electron microscopy as a quantitative method for investigating tau fibrillization. Anal Biochem 329:238–246

    Article  CAS  PubMed  Google Scholar 

  54. von Bergen M, Barghorn S, Muller SA, Pickhardt M, Biernat J, Mandelkow EM, Davies P, Aebi U, Mandelkow E (2006) The core of Tau-paired helical filaments studied by scanning transmission electron microscopy and limited proteolysis. Biochemistry 45:6446–6457

    Article  Google Scholar 

  55. Xu S, Brunden KR, Trojanowski JQ, Lee VM (2010) Characterization of tau fibrillization in vitro. Alzheimers Dement 6:110–117

    Article  CAS  PubMed  Google Scholar 

  56. Mutreja Y, Combs B, Gamblin TC (2019) FTDP-17 mutations alter the aggregation and microtubule stabilization propensity of Tau in an isoform-specific fashion. Biochemistry 58:742–754

    Article  CAS  PubMed  Google Scholar 

  57. Necula M, Chirita CN, Kuret J (2005) Cyanine dye n744 inhibits Tau fibrillization by blocking filament extension: implications for the treatment of tauopathic neurodegenerative diseases. Biochemistry 44:10227–10237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants AG072458 and AG079573.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Kuret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Malyshka, D., Jimenez-Harrison, D., Kuret, J. (2024). Sedimentation and Laser Light Scattering Methods for Quantifying Synthetic Tau Aggregation Propensity. In: Smet-Nocca, C. (eds) Tau Protein. Methods in Molecular Biology, vol 2754. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3629-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3629-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3628-2

  • Online ISBN: 978-1-0716-3629-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics