Skip to main content

Redirecting Human Conventional and Regulatory T Cells Using Chimeric Antigen Receptors

  • Protocol
  • First Online:
Cancer Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2748))

Abstract

The adaptive immune system exhibits exquisite specificity and memory and is involved in virtually every process in the human body. Redirecting adaptive immune cells, in particular T cells, to desired targets has the potential to lead to the creation of powerful cell-based therapies for a wide range of maladies. While conventional effector T cells (Teff) would be targeted towards cells to be eliminated, such as cancer cells, immunosuppressive regulatory T cells (Treg) would be directed towards tissues to be protected, such as transplanted organs. Chimeric antigen receptors (CARs) are designer molecules comprising an extracellular recognition domain and an intracellular signaling domain that drives full T cell activation directly downstream of target binding. Here, we describe procedures to generate and evaluate human CAR CD4+ helper T cells, CD8+ cytotoxic T cells, and CD4+FOXP3+ regulatory T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neefjes J, Jongsma ML, Paul P, Bakke O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11(12):823–836. https://doi.org/10.1038/nri3084

    Article  PubMed  CAS  Google Scholar 

  2. Montemurro A, Schuster V, Povlsen HR, Bentzen AK, Jurtz V, Chronister WD et al (2021) NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRalpha and beta sequence data. Commun Biol 4(1):1060. https://doi.org/10.1038/s42003-021-02610-3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. June CH, Sadelain M (2018) Chimeric antigen receptor therapy. N Engl J Med 379(1):64–73. https://doi.org/10.1056/NEJMra1706169

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Hou AJ, Chen LC, Chen YY (2021) Navigating CAR-T cells through the solid-tumour microenvironment. Nat Rev Drug Discov 20(7):531–550. https://doi.org/10.1038/s41573-021-00189-2

    Article  PubMed  CAS  Google Scholar 

  5. Amor C, Feucht J, Leibold J, Ho YJ, Zhu C, Alonso-Curbelo D et al (2020) Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583(7814):127–132. https://doi.org/10.1038/s41586-020-2403-9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Rurik JG, Tombacz I, Yadegari A, Mendez Fernandez PO, Shewale SV, Li L et al (2022) CAR T cells produced in vivo to treat cardiac injury. Science 375(6576):91–96. https://doi.org/10.1126/science.abm0594

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Liu E, Tong Y, Dotti G, Shaim H, Savoldo B, Mukherjee M et al (2018) Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32(2):520–531. https://doi.org/10.1038/leu.2017.226

    Article  PubMed  CAS  Google Scholar 

  8. Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M et al (2020) Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol 38(8):947–953. https://doi.org/10.1038/s41587-020-0462-y

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Muller YD, Ferreira LMR, Ronin E, Ho P, Nguyen V, Faleo G et al (2021) Precision engineering of an anti-HLA-A2 chimeric antigen receptor in regulatory T cells for transplant immune tolerance. Front Immunol 12:686439. https://doi.org/10.3389/fimmu.2021.686439

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Ferreira LMR, Muller YD, Bluestone JA, Tang Q (2019) Next-generation regulatory T cell therapy. Nat Rev Drug Discov 18(10):749–769. https://doi.org/10.1038/s41573-019-0041-4

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Muller YD, Nguyen DP, Ferreira LMR, Ho P, Raffin C, Valencia RVB et al (2021) The CD28-transmembrane domain mediates chimeric antigen receptor heterodimerization with CD28. Front Immunol 12:639818. https://doi.org/10.3389/fimmu.2021.639818

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64(3):313–320. https://doi.org/10.1016/0022-1759(83)90438-6

    Article  PubMed  CAS  Google Scholar 

  13. Collison LW, Vignali DA (2011) In vitro Treg suppression assays. Methods Mol Biol 707:21–37. https://doi.org/10.1007/978-1-61737-979-6_2

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Fung VCW, Rosado-Sanchez I, Levings MK (2021) Transduction of human T cell subsets with lentivirus. Methods Mol Biol 2285:227–254. https://doi.org/10.1007/978-1-0716-1311-5_19

    Article  PubMed  CAS  Google Scholar 

  15. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499. https://doi.org/10.1038/ni.2035

    Article  PubMed  CAS  Google Scholar 

  16. Skartsis N, Peng Y, Ferreira LMR, Nguyen V, Ronin E, Muller YD et al (2021) IL-6 and TNFalpha drive extensive proliferation of human tregs without compromising their lineage stability or function. Front Immunol 12:783282. https://doi.org/10.3389/fimmu.2021.783282

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Human Islet Research Network (HIRN) Emerging Leader in Type 1 Diabetes grant U24DK104162-07 (LMRF), American Cancer Society (ACS) Institutional Research Grant IRG-19-137-20 (LMRF), South Carolina Clinical and Translational Research (SCTR) Pilot Project Discovery Grant 1TL1TR001451-01 (LMRF), Diabetes Research Connection (DRC) Grant IPF 22-1224 (LMRF), and Cellular, Biochemical and Molecular Sciences training grant T32GM132055 (RWC). Supported in part by the Flow Cytometry and Cell Sorting Shared Resource, Hollings Cancer Center, Medical University of South Carolina (P30 CA138313). Figures 1, 4, 6, 8, 9, and 12 were created with BioRender.com. Analyses in Figs. 7, 8, 10, and 11 were performed using GraphPad Prism for Mac. The flow cytometry results in Figs. 2, 4, 5, 6, 10, 12, and 13 were analyzed using FlowJo v10.8 Software (BD Life Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo M. R. Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zimmerman, C.M., Robino, R.A., Cochrane, R.W., Dominguez, M.D., Ferreira, L.M.R. (2024). Redirecting Human Conventional and Regulatory T Cells Using Chimeric Antigen Receptors. In: Siciliano, V., Ceroni, F. (eds) Cancer Immunotherapy. Methods in Molecular Biology, vol 2748. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3593-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3593-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3592-6

  • Online ISBN: 978-1-0716-3593-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics