Skip to main content

Optical Estimation of Bioelectric Patterns in Living Embryos

  • Protocol
  • First Online:
Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2745))

Abstract

Fluorescent lifetime imaging (FLIM) is a powerful tool for visualizing physiological parameters in vivo. We present here a 3-dye strategy for mapping bioelectric patterns in living Xenopus laevis embryos leveraging the quantitative power of fluorescent lifetime imaging. We discuss a general strategy for disentangling physiological artifacts from true bioelectric signals, a method for dye delivery via transcardial injection, and how to visualize and interpret the fluorescent lifetime of the dyes in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams DS, Levin M (2012) Measuring resting membrane potential using the fluorescent voltage reporters DiBAC4(3) and CC2-DMPE. Cold Spring Harb Protoc 2012(4):459–464. https://doi.org/10.1101/pdb.prot067702

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adams DS, Levin M (2012) General principles for measuring resting membrane potential and ion concentration using fluorescent bioelectricity reporters. Cold Spring Harb Protoc 2012(4):385–397. https://doi.org/10.1101/pdb.top067710

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bulusu V, Prior N, Snaebjornsson MT, Kuehne A, Sonnen KF, Kress J et al (2017) Spatiotemporal analysis of a glycolytic activity gradient linked to mouse embryo mesoderm development. Dev Cell 40(4):331–41 e4. https://doi.org/10.1016/j.devcel.2017.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oginuma M, Moncuquet P, Xiong F, Karoly E, Chal J, Guevorkian K et al (2017) A gradient of glycolytic activity coordinates FGF and Wnt signaling during elongation of the body axis in amniote embryos. Dev Cell 40(4):342–53 e10. https://doi.org/10.1016/j.devcel.2017.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhattacharya D, Azambuja AP, Simoes-Costa M (2020) Metabolic reprogramming promotes neural crest migration via Yap/Tead signaling. Dev Cell 53(2):199–211 e6. https://doi.org/10.1016/j.devcel.2020.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levin M (2021) Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 184(8):1971–1989. https://doi.org/10.1016/j.cell.2021.02.034

    Article  CAS  PubMed  Google Scholar 

  7. Harris MP (2021) Bioelectric signaling as a unique regulator of development and regeneration. Development 148(10). https://doi.org/10.1242/dev.180794

  8. Bates E (2015) Ion channels in development and cancer. Annu Rev Cell Dev Biol 31:231–247. https://doi.org/10.1146/annurev-cellbio-100814-125338

    Article  CAS  PubMed  Google Scholar 

  9. Funk RHW, Scholkmann F (2023) The significance of bioelectricity on all levels of organization of an organism. Part 1: from the subcellular level to cells. Prog Biophys Mol Biol 177:185–201. https://doi.org/10.1016/j.pbiomolbio.2022.12.002

    Article  CAS  PubMed  Google Scholar 

  10. Vandenberg LN, Morrie RD, Adams DS (2011) V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis. Dev Dyn 240(8):1889–1904. https://doi.org/10.1002/dvdy.22685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Emmons-Bell M, Durant F, Tung A, Pietak A, Miller K, Kane A et al (2019) Regenerative adaptation to electrochemical perturbation in planaria: a molecular analysis of physiological plasticity. iScience 22:147–165. https://doi.org/10.1016/j.isci.2019.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Levin M, Martyniuk CJ (2018) The bioelectric code: an ancient computational medium for dynamic control of growth and form. Biosystems 164:76–93. https://doi.org/10.1016/j.biosystems.2017.08.009

    Article  PubMed  Google Scholar 

  13. Mathews J, Chang J, Devlin L, Levin M (2023) Cellular signaling pathways as plastic, proto-cognitive systems: implications for biomedicine. Patterns 4(5):100737. https://doi.org/10.1016/j.patter.2023.100737

  14. Mathews J, Levin M (2018) The body electric 2.0: recent advances in developmental bioelectricity for regenerative and synthetic bioengineering. Curr Opin Biotechnol 52:134–144. https://doi.org/10.1016/j.copbio.2018.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pio-Lopez L, Levin M (2023) Morphoceuticals: perspectives for discovery of drugs targeting anatomical control mechanisms in regenerative medicine, cancer and aging. Drug Discov Today 28(6):103585. https://doi.org/10.1016/j.drudis.2023.103585

    Article  CAS  PubMed  Google Scholar 

  16. Yi C, Spitters TW, Al-Far EAA, Wang S, Xiong T, Cai S et al (2021) A calcineurin-mediated scaling mechanism that controls a K(+)-leak channel to regulate morphogen and growth factor transcription. elife 10. https://doi.org/10.7554/eLife.60691

  17. Perathoner S, Daane JM, Henrion U, Seebohm G, Higdon CW, Johnson SL et al (2014) Bioelectric signaling regulates size in zebrafish fins. PLoS Genet 10(1):e1004080. https://doi.org/10.1371/journal.pgen.1004080

    Article  CAS  PubMed Central  Google Scholar 

  18. Levin M (2014) Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration. J Physiol 592(11):2295–2305. https://doi.org/10.1113/jphysiol.2014.271940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Srivastava P, Kane A, Harrison C, Levin M (2021) A meta-analysis of bioelectric data in cancer, embryogenesis, and regeneration. Bioelectricity 3(1):42–67. https://doi.org/10.1089/bioe.2019.0034

    Article  PubMed  PubMed Central  Google Scholar 

  20. Miller EW (2016) Small molecule fluorescent voltage indicators for studying membrane potential. Curr Opin Chem Biol 33:74–80. https://doi.org/10.1016/j.cbpa.2016.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kulkarni RU, Miller EW (2017) Voltage imaging: pitfalls and potential. Biochemistry 56(39):5171–5177. https://doi.org/10.1021/acs.biochem.7b00490

    Article  CAS  PubMed  Google Scholar 

  22. Deal PE, Grenier V, Kulkarni RU, Liu P, Walker AS, Miller EW (2020) Making life visible: fluorescent indicators to probe membrane potential. Springer Singapore, Singapore, pp 89–104

    Book  Google Scholar 

  23. Lazzari-Dean JR, Gest AM, Miller EW (2019) Optical estimation of absolute membrane potential using fluorescence lifetime imaging. elife 8:e44522. https://doi.org/10.7554/eLife.44522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brinks D, Klein AJ, Cohen AE (2015) Two-photon lifetime imaging of voltage indicating proteins as a probe of absolute membrane voltage. Biophys J 109(5):914–921. https://doi.org/10.1016/j.bpj.2015.07.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miller EW, Lin JY, Frady EP, Steinbach PA, Kristan WB Jr, Tsien RY (2012) Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires. Proc Natl Acad Sci U S A 109(6):2114–2119. https://doi.org/10.1073/pnas.1120694109

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huang YL, Walker AS, Miller EW (2015) A photostable silicon rhodamine platform for optical voltage sensing. J Am Chem Soc 137(33):10767–10776. https://doi.org/10.1021/jacs.5b06644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hardwick LJA, Philpott A (2018) Xenopus models of cancer: expanding the oncologist’s toolbox. Front Physiol 9:1660. https://doi.org/10.3389/fphys.2018.01660

    Article  PubMed  PubMed Central  Google Scholar 

  28. Blum M, Ott T (2018) Xenopus: an undervalued model organism to study and model human genetic disease. Cells Tissues Organs 205(5–6):303–313. https://doi.org/10.1159/000490898

    Article  CAS  PubMed  Google Scholar 

  29. Tseng AS (2017) Seeing the future: using Xenopus to understand eye regeneration. Genesis 55(1–2). https://doi.org/10.1002/dvg.23003

  30. Getwan M, Lienkamp SS (2017) Toolbox in a tadpole: Xenopus for kidney research. Cell Tissue Res 369(1):143–157. https://doi.org/10.1007/s00441-017-2611-2

    Article  PubMed  Google Scholar 

  31. Dubey A, Saint-Jeannet JP (2017) Modeling human craniofacial disorders in Xenopus. Curr Pathobiol Rep 5(1):79–92. https://doi.org/10.1007/s40139-017-0128-8

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tseng AS, Levin M (2008) Tail regeneration in Xenopus laevis as a model for understanding tissue repair. J Dent Res 87(9):806–816. https://doi.org/10.1177/154405910808700909

    Article  CAS  PubMed  Google Scholar 

  33. Özugur S, Chávez MN, Sanchez-Gonzalez R, Kunz L, Nickelsen J, Straka H (2022) Transcardial injection and vascular distribution of microalgae in Xenopus laevis as means to supply the brain with photosynthetic oxygen. STAR Protoc 3(2):101250. https://doi.org/10.1016/j.xpro.2022.101250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Özugur S, Chávez MN, Sanchez-Gonzalez R, Kunz L, Nickelsen J, Straka H (2021) Green oxygen power plants in the brain rescue neuronal activity. iScience 24(10):103158. https://doi.org/10.1016/j.isci.2021.103158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ohk J, Jung H (2017) Visualization and quantitative analysis of embryonic angiogenesis in Xenopus tropicalis. J Vis Exp 123. https://doi.org/10.3791/55652

  36. (2018) Marc’s modified Ringer’s solution (pH 7.8). Cold Spring Harb Protoc 2018(1):pdb.rec102749. https://doi.org/10.1101/pdb.rec102749

  37. Alvarez L, Widzgowski B, Ossato G, van den Broek B, Jalink K, Kuschel L et al (2019) SP8 FALCON: a novel concept in fluorescence lifetime imaging enabling video-rate confocal FLIM. Nat Methods 16:1069–1071

    Google Scholar 

  38. Sive HL, Grainger RM, Harland RM. Microinjection of Xenopus oocytes. Cold Spring Harb Protoc. 2010;2010(12):pdb prot5536. doi: https://doi.org/10.1101/pdb.prot5536

    Book  Google Scholar 

  39. Nieuwkoop PD (1967) Normal table of Xenopus laevis (Daudin). In: External and internal stage criteria in the development of Xenopus laevis. North-Holland Publishing Company, Amsterdam, pp 162–199

    Google Scholar 

  40. Zahn N, James-Zorn C, Ponferrada VG, Adams DS, Grzymkowski J, Buchholz DR, Nascone-Yoder NM, Horb M, Moody SA, Vize PD, Zorn AM (2022) Normal Table of Xenopus development: a new graphical resource. Development 149(14):dev200356. https://doi.org/10.1242/dev.200356

Download references

Acknowledgements

The authors thank Evan Miller for providing the VF2.1.Cl, VF2.0.Cl, and BeRST dye used in this paper.

Funding and Competing Interests

We gratefully acknowledge funding via a sponsored research agreement from Astonishing Labs, and grant 62212 from the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Levin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

McMillen, P., Levin, M. (2024). Optical Estimation of Bioelectric Patterns in Living Embryos. In: Bizzarri, M. (eds) Systems Biology. Methods in Molecular Biology, vol 2745. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3577-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3577-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3576-6

  • Online ISBN: 978-1-0716-3577-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics