Skip to main content

Isolation of Phage WO Particles from Wolbachia-Infected Arthropods

  • Protocol
  • First Online:
Wolbachia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2739))

Abstract

Nearly all arthropod-associated Wolbachia contain intact and/or genomic remnants of phage WO, temperate bacteriophages that facilitate horizontal gene transfer, genomic rearrangement of the bacterial chromosome, and symbiotic interactions between Wolbachia and their arthropod hosts. Integrated prophage WO genomes produce active, lytic particles; but the lack of a cell-free culturing system for Wolbachia render them difficult to purify and study. This chapter describes polyethylene glycol (PEG) precipitation of phage particles from Wolbachia-infected arthropods, followed by confirmation of phage WO isolation and purification using electron microscopy and PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wright JD, Sjostrand FS, Portaro JK et al (1978) The ultrastructure of the Rickettsia-like microorganism Wolbachia pipientis and associated virus-like bodies in the mosquito Culex pipiens. J Ultrastruct Res 63:79–85. https://doi.org/10.1016/s0022-5320(78)80046-x

    Article  CAS  PubMed  Google Scholar 

  2. Masui S, Kamoda S, Sasaki T et al (2000) Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods. J Mol Evol 51:491–497. https://doi.org/10.1007/s002390010112

    Article  CAS  PubMed  Google Scholar 

  3. Wu M, Sun LV, Vamathevan J et al (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:E69. https://doi.org/10.1371/journal.pbio.0020069

    Article  PubMed  PubMed Central  Google Scholar 

  4. Masui S, Kuroiwa H, Sasaki T et al (2001) Bacteriophage WO and virus-like particles in Wolbachia, an endosymbiont of arthropods. Biochem Biophys Res Commun 283:1099–1104. https://doi.org/10.1006/bbrc.2001.4906

    Article  CAS  PubMed  Google Scholar 

  5. Bordenstein SR, Marshall ML, Fry AJ et al (2006) The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog 2:e43. https://doi.org/10.1371/journal.ppat.0020043

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fujii Y, Kubo T, Ishikawa H et al (2004) Isolation and characterization of the bacteriophage WO from Wolbachia, an arthropod endosymbiont. Biochem Biophys Res Commun 317:1183–1188. https://doi.org/10.1016/j.bbrc.2004.03.164

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka K, Furukawa S, Nikoh N et al (2009) Complete WO phage sequences reveal their dynamic evolutionary trajectories and putative functional elements required for integration into the Wolbachia genome. Appl Environ Microbiol 75:5676–5686. https://doi.org/10.1128/AEM.01172-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bordenstein SR, Bordenstein SR (2016) Eukaryotic association module in phage WO genomes from Wolbachia. Nat Commun 7:13155. https://doi.org/10.1038/ncomms13155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  10. Bordenstein SR, Bordenstein SR (2022) Widespread phages of endosymbionts: phage WO genomics and the proposed taxonomic classification of Symbioviridae. PLoS Genet 18:e1010227. https://doi.org/10.1371/journal.pgen.1010227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chafee ME, Zecher CN, Gourley ML et al (2011) Decoupling of host-symbiont-phage coadaptations following transfer between insect species. Genetics 187:203–215. https://doi.org/10.1534/genetics.110.120675

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhou W, Rousset F, O’Neil S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci 265:509–515. https://doi.org/10.1098/rspb.1998.0324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Werren JH, Windsor DM (2000) Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc Biol Sci 267:1277–1285. https://doi.org/10.1098/rspb.2000.1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gavotte L, Vavre F, Henri H et al (2004) Diversity, distribution and specificity of WO phage infection in Wolbachia of four insect species. Insect Mol Biol 13:147–153. https://doi.org/10.1111/j.0962-1075.2004.00471.x

    Article  CAS  PubMed  Google Scholar 

  15. Sanogo YO, Dobson SL (2006) WO bacteriophage transcription in Wolbachia-infected Culex pipiens. Insect Biochem Mol Biol 36:80–85. https://doi.org/10.1016/j.ibmb.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  16. Chauvatcharin N, Ahantarig A, Baimai V et al (2006) Bacteriophage WO-B and Wolbachia in natural mosquito hosts: infection incidence, transmission mode and relative density. Mol Ecol 15:2451–2461. https://doi.org/10.1111/j.1365-294X.2006.02947.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah R. Bordenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bordenstein, S.R. (2024). Isolation of Phage WO Particles from Wolbachia-Infected Arthropods. In: Fallon, A.M. (eds) Wolbachia. Methods in Molecular Biology, vol 2739. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3553-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3553-7_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3552-0

  • Online ISBN: 978-1-0716-3553-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics