Skip to main content

Use of Reverse Genetics for the Generation of Recombinant Influenza Viruses Carrying Nanoluciferase

  • Protocol
  • First Online:
Reverse Genetics of RNA Viruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2733))

Abstract

Influenza A (FLUAV) and influenza B (FLUBV) viruses are human and/or animal pathogens widely studied due to their importance to public health and animal production. Both FLUAV and FLUBV possess a genome composed of eight viral gene segments. For reverse genetics of influenza viruses, transcription of the mRNA for the viral proteins is typically done from a plasmid encoding an RNA polymerase II (pol II) promoter element upstream of cloned viral cDNA and expressed like host mRNA. On the other side, the synthesis of the negative-sense, single-stranded, uncapped vRNAs can be accomplished by the host’s RNA polymerase I (pol I). The reverse genetics for influenza has allowed the manipulation of influenza genomes incorporating heterogeneous sequences into different segments of the influenza genome, such as reporter genes. In this chapter, we outline the protocol from the generation of reverse genetic plasmid that can be applied for the cloning of any of the segments of FLUAV or FLUBV. Furthermore, we describe a protocol for generating FLUAV or FLUBV recombinant viruses carrying Nanoluciferase (NLuc) in the PB1 gene using reverse genetics. Finally, we delineate a microneutralization protocol using FLUAV-NLuc or FLUBV-NLuc viruses optimized for the use of antibodies from different sources (mice, ferrets, avian, etc.), which provides a more sensitive, reliable, and avidity-independent method to assess the presence of neutralizing antibodies against FLUAV or FLUBV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (2012) Ninth report of the international committee on taxonomy of viruses. Elsevier Academic Press, San Diego

    Google Scholar 

  2. Rajao DS, Perez DR (2018) Universal vaccines and vaccine platforms to protect against influenza viruses in humans and agriculture. Front Microbiol 9:123. Epub 2018/02/23. https://doi.org/10.3389/fmicb.2018.00123. PubMed PMID: 29467737; PubMed Central PMCID: PMCPMC5808216

  3. Chen R, Holmes EC (2008) The evolutionary dynamics of human influenza B virus. J Mol Evol 66(6):655–663. Epub 2008/05/28. https://doi.org/10.1007/s00239-008-9119-z. PubMed PMID: 18504518; PubMed Central PMCID: PMCPMC3326418

  4. Palese P, Shaw M (2007) Orthomyxoviridae: the viruses and their replication. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  5. Wright P, Nuemann G, Kawaoka Y (2007) Orthomhxoviruses. Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  6. Nogales A, Perez DR, Santos J, Finch C, Martinez-Sobrido L (2017) Reverse genetics of influenza B viruses. In: Perez DR (ed) Reverse genetics of RNA viruses. Humana Press, New York

    Google Scholar 

  7. Palese P, Schulman JL (1976) Mapping of the influenza virus genome: identification of the hemagglutinin and the neuraminidase genes. Proc Natl Acad Sci U S A 73(6):2142–2146. Epub 1976/06/01. https://doi.org/10.1073/pnas.73.6.2142. PubMed PMID: 1064882; PubMed Central PMCID: PMCPMC430466

  8. Gamblin SJ, Skehel JJ (2010). Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285(37):28403–28409. Epub 2010/06/12. https://doi.org/10.1074/jbc.R110.129809. PubMed PMID: 20538598; PubMed Central PMCID: PMCPMC2937864

  9. Gambaryan AS, Tuzikov AB, Piskarev VE, Yamnikova SS, Lvov DK, Robertson JS et al (1997) Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6′-sialyl(N-acetyllactosamine). Virology 232(2):345–350. Epub 1997/06/09. https://doi.org/10.1006/viro.1997.8572

    Article  CAS  PubMed  Google Scholar 

  10. Liu C, Eichelberger MC, Compans RW, Air GM (1995) Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. J Virol 69(2):1099–1106. Epub 1995/02/01. https://doi.org/10.1128/JVI.69.2.1099-1106.1995. PubMed PMID: 7815489; PubMed Central PMCID: PMCPMC188682

  11. Webster RG, Laver WG (1967) Preparation and properties of antibody directed specifically against the neuraminidase of influenza virus. J Immunol 99(1):49–55. Epub 1967/07/01

    Article  CAS  PubMed  Google Scholar 

  12. Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, et al (2012) A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A;109(11):4269–4274. Epub 2012/03/01. https://doi.org/10.1073/pnas.1116200109. PubMed PMID: 22371588; PubMed Central PMCID: PMCPMC3306675

  13. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, et al (2013) New world bats harbor diverse influenza A viruses. PLoS Pathog 9(10):e1003657. Epub 2013/10/17. https://doi.org/10.1371/journal.ppat.1003657. PubMed PMID: 24130481; PubMed Central PMCID: PMCPMC3794996

  14. Yoon SW, Webby RJ, Webster RG (2014) Evolution and ecology of influenza A viruses. Curr Top Microbiol Immunol 385:359–375. Epub 2014/07/06. https://doi.org/10.1007/82_2014_396

    Article  CAS  PubMed  Google Scholar 

  15. Stoeckle MY, Shaw MW, Choppin PW (1987) Segment-specific and common nucleotide sequences in the noncoding regions of influenza B virus genome RNAs. Proc Natl Acad Sci U S A 84(9):2703–2707. Epub 1987/05/01. https://doi.org/10.1073/pnas.84.9.2703. PubMed PMID: 3472232; PubMed Central PMCID: PMCPMC304726

  16. Jackson D, Elderfield RA, Barclay WS (2011) Molecular studies of influenza B virus in the reverse genetics era. J Gen Virol 92(Pt 1):1–17. Epub 2010/10/12. https://doi.org/10.1099/vir.0.026187-0

    Article  CAS  PubMed  Google Scholar 

  17. Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, Garcia-Sastre A (1999) Rescue of influenza A virus from recombinant DNA. J Virol 73(11):9679–9682. Epub 1999/10/09. PubMed PMID: 10516084; PubMed Central PMCID: PMCPMC113010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoffmann E, Mahmood K, Yang CF, Webster RG, Greenberg HB, Kemble G (2002) Rescue of influenza B virus from eight plasmids. Proc Natl Acad Sci U S A 99(17):11411–11416. Epub 2002/08/13. https://doi.org/10.1073/pnas.172393399. PubMed PMID: 12172012; PubMed Central PMCID: PMCPMC123270

  19. Engelhardt OG (2013) Many ways to make an influenza virus – review of influenza virus reverse genetics methods. Influenza Other Respir Viruses 7(3):249–256. https://doi.org/10.1111/j.1750-2659.2012.00392.x

    Article  CAS  PubMed  Google Scholar 

  20. Hoffmann E, Neumann G, Hobom G, Webster RG, Kawaoka Y (2000) “Ambisense” approach for the generation of influenza a virus: vRNA and mRNA synthesis from one template. Virology 267(2):310–317

    Article  CAS  PubMed  Google Scholar 

  21. Seibert B, Angel M, Caceres CJ, Sutton T, Kumar A, Ferreri L, et al (2021) Development of a swine RNA p I driven Influenza reverse genetics system for the rescue of type A and B Influenza viruses. J Virol Methods 288:114011. Epub 20201102. https://doi.org/10.1016/j.jviromet.2020.114011. PubMed PMID: 33152409; PubMed Central PMCID: PMCPMC8103788

  22. Tran V, Moser LA, Poole DS, Mehle A (2013) Highly sensitive real-time in vivo imaging of an influenza reporter virus reveals dynamics of replication and spread. J Virol 87(24):13321–13329. Epub 20131002. https://doi.org/10.1128/JVI.02381-13. PubMed PMID: 24089552; PubMed Central PMCID: PMCPMC3838222

  23. Kim JH, Bryant H, Fiedler E, Cao T, Rayner JO (2022) Real-time tracking of bioluminescent influenza A virus infection in mice. Sci Rep 12(1):3152. Epub 20220224. https://doi.org/10.1038/s41598-022-06667-w. PubMed PMID: 35210462; PubMed Central PMCID: PMCPMC8873407

  24. Caceres CJ, Cardenas-Garcia S, Jain A, Gay LC, Carnaccini S, Seibert B, et al (2021) Development of a novel live attenuated influenza A virus vaccine encoding the IgA-inducing protein. Vaccines (Basel) 9(7). Epub 20210627. https://doi.org/10.3390/vaccines9070703. PubMed PMID: 34198994; PubMed Central PMCID: PMCPMC8310050

  25. Cardenas-Garcia S, Caceres CJ, Jain A, Geiger G, Mo JS, Jasinskas A, et al (2021) FluB-RAM and FluB-RANS: genome rearrangement as safe and efficacious live attenuated influenza B virus vaccines. Vaccines (Basel) 9(8). Epub 20210812. https://doi.org/10.3390/vaccines9080897. PubMed PMID: 34452022; PubMed Central PMCID: PMCPMC8402576

  26. Reed LM, H. (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27(3):493–497

    Article  Google Scholar 

  27. Martinez-Sobrido L, Garcia-Sastre A (2010) Generation of recombinant influenza virus from plasmid DNA. J Vis Exp 42. Epub 2010/08/24. https://doi.org/10.3791/2057. PubMed PMID: 20729804; PubMed Central PMCID: PMCPMC3156010

  28. Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97(11):6108–6113. Epub 2000/05/10. https://doi.org/10.1073/pnas.100133697. PubMed PMID: 10801978; PubMed Central PMCID: PMCPMC18566

Download references

Acknowledgments

DRP’s research is funded by a subcontract 75N93021C00014 from the Centers for Influenza Research and Response (CEIRR) from the National Institute of Allergy and Infectious Diseases (NIAID). Additional funds were obtained by DRP under GRANT12901999, Proposal 2019-05890, Accession Number 1022658 from the National Institute of Food and Agriculture (NIFA), US Department of Agriculture. DRP receives additional support from the Georgia Research Alliance and the Caswell S. Eidson endowment funds from the University of Georgia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Joaquin Caceres or Daniel R. Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Caceres, C.J., Gay, L.C., Faccin, F.C., Pérez, D.R. (2024). Use of Reverse Genetics for the Generation of Recombinant Influenza Viruses Carrying Nanoluciferase. In: Pérez, D.R. (eds) Reverse Genetics of RNA Viruses. Methods in Molecular Biology, vol 2733. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3533-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3533-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3532-2

  • Online ISBN: 978-1-0716-3533-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics