Skip to main content

Observation of Bacteriophage Ultrastructure by Cryo-Electron Microscopy

  • Protocol
  • First Online:
Bacteriophage Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2734))

Abstract

Transmission electron microscopy (TEM) is an ideal method to observe and determine the structure of bacteriophages. From early studies by negative staining to the present atomic structure models derived from cryo-TEM, bacteriophage detection, classification, and structure determination have been mostly done by electron microscopy. Although embedding in metal salts has been a routine method for virus observation for many years, the preservation of bacteriophages in a thin layer of fast frozen buffer has proven to be the most convenient preparation method for obtaining images using cryo-electron microscopy (cryo-EM). In this technique, frozen samples are observed at liquid nitrogen temperature, and the images are acquired using different recording media. The incorporation of direct electron detectors has been a fundamental step in achieving atomic resolution images of a number of viruses. These projection images can be numerically combined using different approaches to render a three-dimensional model of the virus. For those viral components exhibiting any symmetry, averaging can nowadays achieve atomic structures in most cases. Image processing methods have also evolved to improve the resolution in asymmetric viral components or regions showing different types of symmetries (symmetry mismatch).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kausche GA, Pfankuch E, Ruska H (1939) Die Sichtbarmachung von pflanzlichem Virus im Übermikroskop. Naturwissenschaften 27:292–299

    Google Scholar 

  2. Goldsmith CS, Miller SE (2009) Modern uses of electron microscopy for detection of viruses. Clin Microbiol Rev 22:552–563

    PubMed  PubMed Central  Google Scholar 

  3. Klug A, Finch JT (1965) Structure of viruses of the papilloma-polyoma type. I. Human wart virus. J Mol Biol 11:403–423

    CAS  PubMed  Google Scholar 

  4. De Rosier DJ, Klug A (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217:130–134

    PubMed  Google Scholar 

  5. Taylor KA, Glaeser RM (1974) Electron diffraction of frozen, hydrated protein crystals. Science 186:1036–1037

    CAS  PubMed  Google Scholar 

  6. Zhang X, Settembre E, Xu C et al (2008) Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc Natl Acad Sci U S A 105:1867–1872

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang W, Baker ML, Jakana J et al (2008) Backbone structure of the infectious epsilon15 virus capsid revealed by electron cryomicroscopy. Nature 451:1130–1134

    CAS  PubMed  Google Scholar 

  8. Adrian M, Dubochet J, Lepault J et al (1984) Cryo-electron microscopy of viruses. Nature 308:32–36

    CAS  PubMed  Google Scholar 

  9. Scheres SH (2016) Processing of structurally heterogeneous Cryo-EM data in RELION. Methods Enzymol 579:125–157

    CAS  Google Scholar 

  10. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Scheres SH (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128:82–97

    CAS  PubMed  Google Scholar 

  13. Punjani A, Rubinstein JL, Fleet DJ et al (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296

    CAS  PubMed  Google Scholar 

  14. Grigorieff N (2007) FREALIGN: high-resolution refinement of single particle structures. J Struct Biol 157:117–125

    CAS  PubMed  Google Scholar 

  15. Sorzano CO, Marabini R, Velazquez-Muriel et al (2004) XMIPP: a new generation of an open-source image processing package for electron microscopy. J Struct Biol 148:194–204

    CAS  PubMed  Google Scholar 

  16. Huiskonen JT (2018) Image processing for cryogenic transmission electron microscopy of symmetry-mismatched complexes. Biosci Rep 38

    Google Scholar 

  17. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    PubMed  Google Scholar 

  18. Pintilie GD, Zhang J, Goddard TD et al (2010) Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. J Struct Biol 170:427–438

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pettersen EF, Goddard TD, Huang et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    CAS  PubMed  Google Scholar 

  20. Lopez-Blanco JR, Chacon P (2013) iMODFIT: efficient and robust flexible fitting based on vibrational analysis in internal coordinates. J Struct Biol 184:261–270

    PubMed  Google Scholar 

  21. Topf M, Lasker K, Webb B et al (2008) Protein structure fitting and refinement guided by cryo-EM density. Structure 16:295–307

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kastner B, Fischer N, Golas MM et al (2008) GraFix: sample preparation for single-particle electron cryomicroscopy. Nat Methods 5:53–55

    CAS  PubMed  Google Scholar 

  23. Russo CJ, Passmore LA (2016) Progress towards an optimal specimen support for electron cryomicroscopy. Curr Opin Struct Biol 37:81–89

    CAS  PubMed Central  Google Scholar 

  24. Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51

    PubMed  Google Scholar 

  25. Potter CS, Chu H, Frey B, Green C, Kisseberth N, Madden TJ, Miller KL, Nahrstedt K, Pulokas J, Reilein A, Tcheng D, Weber D, Carragher B (1999) Leginon: a system for fully automated acquisition of 1000 electron micrographs a day. Ultramicroscopy 77:153–161

    CAS  PubMed  Google Scholar 

  26. Korinek A, Beck F, Baumeister W et al (2011) Computer controlled cryo-electron microscopy—TOM(2) a software package for high-throughput applications. J Struct Biol 175:394–405

    PubMed  Google Scholar 

  27. Glaeser RM (2016) Specimen behavior in the electron beam. Methods Enzymol 579:19–50

    CAS  PubMed  Google Scholar 

  28. Grant T, Grigorieff N (2015) Measuring the optimal exposure for single particle cryo-EM using a 2.6 A reconstruction of rotavirus VP6. elife 4:e06980

    PubMed  PubMed Central  Google Scholar 

  29. Cardone G, Yan X, Sinkovits RS et al (2013) Three-dimensional reconstruction of icosahedral particles from single micrographs in real time at the microscope. J Struct Biol 183:329–341

    Google Scholar 

  30. Navaza J (2003) On the three-dimensional reconstruction of icosahedral particles. J Struct Biol 144:13–23

    PubMed  Google Scholar 

  31. Dai X, Li Z, Lai M, Shu S et al (2017) In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus. Nature 541:112–116

    CAS  PubMed  Google Scholar 

  32. Wriggers W, Chacon P (2001) Modeling tricks and fitting techniques for multiresolution structures. Structure 9:779–788

    CAS  Google Scholar 

  33. Chen JZ, Furst J, Chapman MS et al (2003) Low-resolution structure refinement in electron microscopy. J Struct Biol 144:144–151

    PubMed  Google Scholar 

  34. Trabuco LG, Villa E, Mitra K et al (2008) Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16:673–683

    CAS  PubMed  PubMed Central  Google Scholar 

  35. DiMaio F, Tyka MD, Baker ML et al (2009) Refinement of protein structures into low-resolution density maps using rosetta. J Mol Biol 392:181–190

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Parent KN, Khayat R, Tu et al (2010) P22 coat protein structures reveal a novel mechanism for capsid maturation: stability without auxiliary proteins or chemical crosslinks. Structure 18:390–401

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ionel A, Velazquez-Muriel JA, Luque D et al (2011) Molecular rearrangements involved in the capsid shell maturation of bacteriophage T7. J Biol Chem 286:234–242

    CAS  PubMed  Google Scholar 

  38. Dauden MI, Martin-Benito J, Sanchez-Ferrero JC et al (2013) Large terminase conformational change induced by connector binding in bacteriophage T7. J Biol Chem 288:16998–17007

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tang J, Lander GC, Olia AS et al (2011) Peering down the barrel of a bacteriophage portal: the genome packaging and release valve in p22. Structure 19:496–502

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Woodson M, Pajak J, Mahler BP et al (2021) A viral genome packaging motor transitions between cyclic and helical symmetry to translocate dsDNA. Sci Adv 7

    Google Scholar 

  41. Aksyuk AA, Leiman PG, Kurochkina LP et al (2009) The tail sheath structure of bacteriophage T4: a molecular machine for infecting bacteria. EMBO J 28:821–829

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chaban Y, Lurz R, Brasiles S et al (2015) Structural rearrangements in the phage head-to-tail interface during assembly and infection. Proc Natl Acad Sci U S A 112:7009–7014

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Agirrezabala X, Martin-Benito J, Caston JR et al (2005) Maturation of phage T7 involves structural modification of both shell and inner core components. EMBO J 24:3820–3829

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cuervo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cuervo, A., Losana, P., Carrascosa, J.L. (2024). Observation of Bacteriophage Ultrastructure by Cryo-Electron Microscopy. In: Azeredo, J., Sillankorva, S. (eds) Bacteriophage Therapy. Methods in Molecular Biology, vol 2734. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3523-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3523-0_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3522-3

  • Online ISBN: 978-1-0716-3523-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics