Skip to main content

Isolation of Bacteriophages for Clinically Relevant Bacteria

  • Protocol
  • First Online:
Bacteriophage Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2734))

Abstract

The isolation of bacteriophages targeting most clinically relevant bacteria is reasonably straightforward as long as its targeted host does not have complex chemical, physical, and environmental requirements. Often, sewage, soil, feces, and different body fluids are used for bacteriophage isolation procedures, and following enrichment, it is common to obtain more than a single phage in a sample. This chapter describes a simple method for the enrichment and isolation of bacteriophages from liquid and solid samples that can be adapted for different clinically important aerobic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hansen GT (2021) Continuous evolution: perspective on the epidemiology of carbapenemase resistance among Enterobacterales and other gram-negative bacteria. Infect Dis Ther 10:75–92. https://doi.org/10.1007/s40121-020-00395-2

    Article  PubMed Central  Google Scholar 

  2. Dalton KR, Rock C, Carroll KC, Davis MF (2020) One health in hospitals: how understanding the dynamics of people, animals, and the hospital built-environment can be used to better inform interventions for antimicrobial-resistant gram-positive infections. Antimicrob Resist Infect Control 9:78. https://doi.org/10.1186/s13756-020-00737-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. LaBauve AE, Wargo MJ (2012) Growth and laboratory maintenance of Pseudomonas aeruginosa. Curr Protoc Microbiol 25: 6E.1.1–6E.1.8. https://doi.org/10.1002/9780471729259.mc06e01s25

  4. Benoit T, Cloutier M, Schop R et al (2020) Comparative assessment of growth media and incubation conditions for enhanced recovery and isolation of Acinetobacter baumannii from aquatic matrices. J Microbiol Methods 178:106023. https://doi.org/10.1016/j.mimet.2020.106023

    Article  CAS  Google Scholar 

  5. Missiakas DM, Schneewind O (2013) Growth and laboratory maintenance of Staphylococcus aureus. In: Current protocols in microbiology, p Unit9C.1

    Google Scholar 

  6. Blair JMA, Webber MA, Baylay AJ et al (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51. https://doi.org/10.1038/nrmicro3380

    Article  CAS  PubMed  Google Scholar 

  7. Mancuso G, Midiri A, Gerace E, Biondo C (2021) Bacterial antibiotic resistance: the most critical pathogens. Pathogens 10:1310. https://doi.org/10.3390/pathogens10101310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Angelis G, Fiori B, Menchinelli G et al (2018) Incidence and antimicrobial resistance trends in bloodstream infections caused by ESKAPE and Escherichia coli at a large teaching hospital in Rome, a 9-year analysis (2007–2015). Eur J Clin Microbiol Infect Dis 37:1627–1636. https://doi.org/10.1007/s10096-018-3292-9

    Article  CAS  PubMed  Google Scholar 

  9. Dion MB, Oechslin F, Moineau S (2020) Phage diversity, genomics and phylogeny. Nat Rev Microbiol 18:125–138. https://doi.org/10.1038/s41579-019-0311-5

    Article  CAS  PubMed  Google Scholar 

  10. Philipson CW, Voegtly LJ, Lueder MR et al (2018) Characterizing phage genomes for therapeutic applications. Viruses 10:188. https://doi.org/10.3390/v10040188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D’Hérelle F (1926) Le bactériophage et son comportement. Masson, Paris

    Google Scholar 

  12. Hyman P (2019) Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals 12:35. https://doi.org/10.3390/ph12010035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Myers J, Davis J II, Lollo M et al (2023) More’s the same – multiple hosts do not select for broader host range phages. Viruses 15:518. https://doi.org/10.3390/v15020518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sillankorva S, Pleteneva E, Shaburova O et al (2010) Salmonella Enteritidis bacteriophage candidates for phage therapy of poultry. J Appl Microbiol 108:1175–1186. https://doi.org/10.1111/j.1365-2672.2009.04549.x

    Article  CAS  PubMed  Google Scholar 

  15. Lazarus AS, Gunnison JB (1947) The action of Pasteurella pestis bacteriophage on Pasteurella, salmonella, and Shigella. J Bacteriol 54:70

    CAS  PubMed  Google Scholar 

  16. Green J, Goldberg RB (1985) Isolation and preliminary characterization of lytic and lysogenic phages with wide host range within the streptomycetes. J Gen Microbiol 131:2459–2465. https://doi.org/10.1099/00221287-131-9-2459

    Article  Google Scholar 

  17. Pinto AM, Faustino A, Pastrana LM et al (2021) Pseudomonas aeruginosa PAO 1 in vitro time-kill kinetics using single phages and phage formulations – modulating death, adaptation, and resistance. Antibiotics 10:877. https://doi.org/10.3390/antibiotics10070877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Serwer P, Hayes SJ, Zaman S et al (2004) Improved isolation of undersampled bacteriophages: finding of distant terminase genes. Virology 329:412–424. https://doi.org/10.1016/j.virol.2004.08.021

    Article  CAS  PubMed  Google Scholar 

  19. Santos SB, Carvalho CM, Sillankorva S et al (2009) The use of antibiotics to improve phage detection and enumeration by the double-layer agar technique. BMC Microbiol 9:148. https://doi.org/10.1186/1471-2180-9-148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ackermann HW, Audurier A, Berthiaume L et al (1978) Guidelines for bacteriophage characterization. Adv Virus Res 23:1–24. https://doi.org/10.1016/S0065-3527(08)60096-2

    Article  CAS  Google Scholar 

  21. Ackermann HW (1998) Tailed bacteriophages: the order Caudovirales. Adv Virus Res 51:135–201. https://doi.org/10.1016/s0065-3527(08)60785-x

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

SS acknowledges funding from the Portuguese Foundation for Science and Technology (FCT) through the individual scientific employment program contract (2020.03171.CEECIND).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanna Sillankorva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sillankorva, S., Hyman, P. (2024). Isolation of Bacteriophages for Clinically Relevant Bacteria. In: Azeredo, J., Sillankorva, S. (eds) Bacteriophage Therapy. Methods in Molecular Biology, vol 2734. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3523-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3523-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3522-3

  • Online ISBN: 978-1-0716-3523-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics