Skip to main content

Evolutionary Structure Conservation and Covariance Scores

  • Protocol
  • First Online:
RNA Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2726))

  • 101 Accesses

Abstract

Effective homology search for non-coding RNAs is frequently not possible via sequence similarity alone. Current methods leverage evolutionary information like structure conservation or covariance scores to identify homologs in organisms that are phylogenetically more distant. In this chapter, we introduce the theoretical background of evolutionary structure conservation and covariance score, and we show hands-on how current methods in the field are applied on example datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF (2008) RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinform 9(1):474

    Article  Google Scholar 

  2. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10(1):421

    Article  Google Scholar 

  3. Dalli D, Wilm A, Mainz I, Steger G (2006) STRAL: progressive alignment of non-coding RNA using base pairing probability vectors in quadratic time. Bioinformatics 22(13):1593–1599

    Article  CAS  PubMed  Google Scholar 

  4. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eggenhofer F (2016) Unsupervised construction, evaluation and visualisation of RNA family models. Wien

    Google Scholar 

  8. Eggenhofer F, Hofacker IL, Höner zu Siederdissen C (2013) CMCompare webserver: comparing RNA families via covariance models. Nucleic Acids Res 41(W1):W499

    Google Scholar 

  9. Eggenhofer F, Hofacker IL, Höner zu Siederdissen C (2016) RNAlien— unsupervised RNA family model construction. Nucleic Acids Res 44(17):8433

    Google Scholar 

  10. Eggenhofer F, Hofacker IL, Backofen R, Höner zu Siederdissen C (2018) CMV: visualization for RNA and protein family models and their comparisons. Bioinformatics 34(15):2676–2678

    Google Scholar 

  11. Fallmann J, Videm P, Bagnacani A, Batut B, Doyle MA, Klingstrom T, Eggenhofer F, Stadler PF, Backofen R, Grüning B (2019) The RNA workbench 2.0: next generation RNA data analysis. Nucleic Acids Res 47(W1):W511–W515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Federhen S (2011) The NCBI taxonomy database. Nucleic Acids Res 40(D1):D136–D143

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gardner PP, Wilm A, Washietl S (2005) A benchmark of multiple sequence alignment programs upon structural RNAs. Nucleic Acids Res 33(8):2433–2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gardner PP, Daub J, Tate J, Moore BL, Osuch IH, Griffiths-Jones S, Finn RD, Nawrocki EP, Kolbe DL, Eddy SR, et al. (2010) Rfam: Wikipedia, clans and the “decimal” release. Nucleic Acids Res 39(suppl_1):D141–D145

    Google Scholar 

  15. Gruber AR, Findeiß S, Washietl S, Hofacker IL, Stadler PF (2010) RNAz 2.0: improved noncoding RNA detection. In: Biocomputing 2010. World Scientific, Singapore, pp 69–79

    Google Scholar 

  16. Grüning B, Dale R, Sjödin A, Chapman B, Rowe J, Tomkins-Tinch C, Valieris R, Köster J, Bioconda T (2018) Bioconda: sustainable and comprehensive software distribution for the life sciences. Nature Methods 15(7):475

    Article  PubMed  PubMed Central  Google Scholar 

  17. Grüning BA, Fallmann J, Yusuf D, Will S, Erxleben A, Eggenhofer F, Houwaart T, Batut B, Videm P, Bagnacani A, Wolfien M, Lott SC, Hoogstrate Y, Hess WR, Wolkenhauer O, Hoffmann S, Akalin A, Ohler U, Stadler PF, Backofen R (2017) The RNA workbench: best practices for RNA and high-throughput sequencing bioinformatics in Galaxy. Nucleic Acids Res 45(W1):W560–W566

    Article  PubMed  PubMed Central  Google Scholar 

  18. Harmanci AO, Sharma G, Mathews DH (2007) Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign. BMC Bioinform 8(1):130

    Article  Google Scholar 

  19. Harrison PW, Alako B, Amid C, Cerdeño-Tárraga A, Cleland I, Holt S, Hussein A, Jayathilaka S, Kay S, Keane T, et al. (2018) The European Nucleotide Archive in 2018. Nucleic Acids Res 47(D1):D84–D88

    Article  PubMed Central  Google Scholar 

  20. Höner zu Siederdissen C, Hofacker IL (2010) Discriminatory power of RNA family models. Bioinformatics 26(18):i453–i459

    Google Scholar 

  21. Kalvari I, Argasinska J, Quinones-Olvera N, Nawrocki EP, Rivas E, Eddy SR, Bateman A, Finn RD, Petrov AI (2018) Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res 46(D1), D335–D342

    Article  CAS  PubMed  Google Scholar 

  22. Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings Bioinform 20(4), 1160–1166

    Article  CAS  Google Scholar 

  23. Kerpedjiev P, Hammer S, Hofacker IL (2015) Forna (force-directed RNA): simple and effective online RNA secondary structure diagrams. Bioinformatics 31(20), 3377–3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kubota M, Tran C, Spitale RC (2015) Progress and challenges for chemical probing of RNA structure inside living cells. Nat Chem Biol 11(12):933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0. Algorithms Mol Biol 6(1):26

    Google Scholar 

  26. Lott SC, Schäfer RA, Mann M, Backofen R, Hess WR, Voß B, Georg J (2018) GLASSgo—automated and reliable detection of sRNA homologs from a single input sequence. Front Genet 9:124

    Article  PubMed  PubMed Central  Google Scholar 

  27. Markham NR, Zuker M (2008) UNAFold. In: Bioinformatics. Springer, Berlin, pp 3–31

    Chapter  Google Scholar 

  28. Nawrocki EP (2014) Annotating functional RNAs in genomes using Infernal. In: RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods. Springer, Berlin, pp 163–197

    Chapter  Google Scholar 

  29. Nawrocki EP, Eddy SR (2007) Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 3(3):e56

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29(22):2933–2935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nawrocki EP, Eddy SR (2016) INFERNAL User’s Guide (1.1.2)

    Google Scholar 

  32. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW, Gardner PP, Jones TA, Tate J et al (2014) Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43(D1):D130–D137

    Article  PubMed  PubMed Central  Google Scholar 

  33. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D et al (2015) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44(D1):D733–D745

    Article  PubMed  PubMed Central  Google Scholar 

  34. Raden M, Ali SM, Alkhnbashi OS, Busch A, Costa F, Davis JA, Eggenhofer F, Gelhausen R, Georg J, Heyne S, et al. (2018) Freiburg RNA tools: a central online resource for RNA-focused research and teaching. Nucleic Acids Res 46(W1):W25–W29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roshan U, Livesay DR (2006) Probalign: multiple sequence alignment using partition function posterior probabilities. Bioinformatics 22(22):2715–2721

    Article  CAS  PubMed  Google Scholar 

  36. Sankoff D (1985) Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J Appl Math 45(5):810–825

    Article  Google Scholar 

  37. Seemann SE, Gorodkin J, Backofen R (2008) Unifying evolutionary and thermodynamic information for RNA folding of multiple alignments. Nucleic Acids Res 36(20):6355–6362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152(1–2):17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7(1):539

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sundfeld D, Havgaard JH, de Melo AC, Gorodkin J (2015) Foldalign 2.5: multithreaded implementation for pairwise structural RNA alignment. Bioinformatics 32(8):1238–1240

    Article  PubMed  PubMed Central  Google Scholar 

  41. The RNAcentral Consortium (2018) RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Res 47(D1):D1250–D1251

    Article  Google Scholar 

  42. Torarinsson E, Havgaard JH, Gorodkin J (2007) Multiple structural alignment and clustering of RNA sequences. Bioinformatics 23(8):926–932

    Article  CAS  PubMed  Google Scholar 

  43. Washietl S, Findeiß S, Müller SA, Kalkhof S, Von Bergen M, Hofacker IL, Stadler PF, Goldman N (2011) RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data. RNA 17(4):578–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weinberg Z, Breaker RR (2011) R2R—software to speed the depiction of aesthetic consensus RNA secondary structures. BMC Bioinform 12(1):3

    Article  CAS  Google Scholar 

  45. Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R (2007) Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 3(4):e65

    Article  PubMed  PubMed Central  Google Scholar 

  46. Will S, Joshi T, Hofacker IL, Stadler PF, Backofen R (2012) LocARNA-P: accurate boundary prediction and improved detection of structural RNAs. RNA 18(5):900–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Höner zu Siederdissen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Eggenhofer, F., Höner zu Siederdissen, C. (2024). Evolutionary Structure Conservation and Covariance Scores. In: Lorenz, R. (eds) RNA Folding. Methods in Molecular Biology, vol 2726. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3519-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3519-3_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3518-6

  • Online ISBN: 978-1-0716-3519-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics