Skip to main content

Engineering Hepatitis B Virus (HBV) Protein Particles for Therapeutic Delivery

  • Protocol
  • First Online:
Therapeutic Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2720))

Abstract

Nature provides an abundance of proteins whose structures and reactivity have been perfected through evolution to perform specific tasks necessary for biological function. The structural and functional properties of many natural proteins are quite valuable for the construction and customization of drug delivery vehicles. Self-assembling protein nanoparticle platforms are particularly useful scaffolds, as their multi-subunit designs allow the attachment of a high density of modifying molecules such as cell-binding ligands that provide avidity for targeting and facilitate encapsulation of large quantities of therapeutic payload. We explored SpyCatcher/SpyTag conjugation as a system to modify hepatitis B virus (HBV)-like particles (HBV VLPs). Using this simple decoration strategy, we demonstrated efficient and cell-selective killing of inflammatory breast cancer cells via delivery of yeast cytosine deaminase suicide enzymes combined with 5-fluoro-cytosine prodrugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang Y, Chan HF, Leong KW (2013) Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 65(1):104–120

    Article  CAS  PubMed  Google Scholar 

  2. Sun Q, Chen Q, Blackstock D, Chen W (2015) Post-translational modification of bionanoparticles as a modular platform for biosensor assembly. ACS Nano 9(8):8554–8561

    Article  CAS  PubMed  Google Scholar 

  3. Wang B, Galliford CV, Low PS (2014) Guiding principles in the design of ligand-targeted nanomedicines. Nanomedicine 9(2):313–330

    Article  CAS  PubMed  Google Scholar 

  4. Lieser RM, Hartzell EJ, Yur D, Sullivan MO, Chen W (2022) EGFR ligand clustering on E2 bionanoparticles for targeted delivery of chemotherapeutics to breast cancer cells. Bioconjug Chem 33(3):452–462

    Article  CAS  PubMed  Google Scholar 

  5. Lameignere E, Malinovska L, Slavikova M, Duchaud E, Mitchell EP, Varrot A, Sedo O, Imberty A, Wimmerova M (2008) Structural basis for mannose recognition by a lectin from opportunistic bacteria Burkholderia cenocepacia. Biochem J 411(2):307–318

    Article  CAS  PubMed  Google Scholar 

  6. Marradi M, Chiodo F, Garcia I, Penades S (2013) Glyconanoparticles as multifunctional and multimodal carbohydrate systems. Chem Soc Rev 42(11):4728–4745

    Article  CAS  PubMed  Google Scholar 

  7. Reynolds M, Marradi M, Imberty A, Penades S, Perez S (2013) Influence of ligand presentation density on the molecular recognition of mannose-functionalised glyconanoparticles by bacterial lectin BC2L-A. Glycoconj J 30(8):747–757

    Article  CAS  PubMed  Google Scholar 

  8. Silpe JE, Sumit M, Thomas TP, Huang B, Kotlyar A, van Dongen MA, Banaszak Holl MM, Orr BG, Choi SK (2013) Avidity modulation of folate-targeted multivalent dendrimers for evaluating biophysical models of cancer targeting nanoparticles. ACS Chem Biol 8(9):2063–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Simnick AJ, Valencia CA, Liu R, Chilkoti A (2010) Morphing low-affinity ligands into high-avidity nanoparticles by thermally triggered self-assembly of a genetically encoded polymer. ACS Nano 4(4):2217–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR Jr, Banaszak Holl MM (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 14(1):107–115

    Article  CAS  PubMed  Google Scholar 

  11. Saul JM, Annapragada AV, Bellamkonda RV (2006) A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J Control Release 114(3):277–287

    Article  CAS  PubMed  Google Scholar 

  12. Ying X, Wen H, Lu WL, Du J, Guo J, Tian W, Men Y, Zhang Y, Li RJ, Yang TY, Shang DW, Lou JN, Zhang LR, Zhang Q (2010) Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release 141(2):183–192

    Article  CAS  PubMed  Google Scholar 

  13. Kratz PA, Böttcher B, Nassal M (1999) Native display of complete foreign protein domains on the surface of hepatitis B virus capsids. Proc Natl Acad Sci 96(5):1915–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crowther RA, Kiselev NA, Böttcher B, Berriman JA, Borisova GP, Ose V, Pumpens P (1994) Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell 77(6):943–950

    Article  CAS  PubMed  Google Scholar 

  15. Steven AC, Conway JF, Cheng N, Watts NR, Belnap DM, Harris A, Stahl SJ, Wingfield PT (2005) Structure, assembly, and antigenicity of hepatitis B virus capsid proteins. In: Advances in virus research, vol 64. Academic Press, pp 125–164

    Google Scholar 

  16. Yoo L, Park J-S, Kwon KC, Kim S-E, Jin X, Kim H, Lee J (2012) Fluorescent viral nanoparticles with stable in vitro and in vivo activity. Biomaterials 33(26):6194–6200

    Article  CAS  PubMed  Google Scholar 

  17. Walker A, Skamel C, Vorreiter J, Nassal M (2008) Internal core protein cleavage leaves the hepatitis B virus capsid intact and enhances its capacity for surface display of heterologous whole chain proteins. J Biol Chem 283(48):33508–33515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nassal M, Skamel C, Kratz PA, Wallich R, Stehle T, Simon MM (2005) A fusion product of the complete Borrelia burgdorferi outer surface protein A (OspA) and the hepatitis B virus capsid protein is highly immunogenic and induces protective immunity similar to that seen with an effective lipidated OspA vaccine formula. Eur J Immunol 35(2):655–665

    Article  CAS  PubMed  Google Scholar 

  19. Hartzell EJ, Lieser RM, Sullivan MO, Chen W (2020) Modular hepatitis B virus-like particle platform for biosensing and drug delivery. ACS Nano 14(10):12642–12651

    Article  CAS  PubMed  Google Scholar 

  20. Lieser RM, Yur D, Sullivan MO, Chen W (2020) Site-specific bioconjugation approaches for enhanced delivery of protein therapeutics and protein drug carriers. Bioconjug Chem 31(10):2272–2282

    Article  CAS  PubMed  Google Scholar 

  21. Axup JY, Bajjuri KM, Ritland M, Hutchins BM, Kim CH, Kazane SA, Halder R, Forsyth JS, Santidrian AF, Stafin K, Lu Y, Tran H, Seller AJ, Biroc SL, Szydlik A, Pinkstaff JK, Tian F, Sinha SC, Felding-Habermann B, Smider VV, Schultz PG (2012) Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc Natl Acad Sci 109(40):16101–16106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lyu Z, Kang L, Buuh ZY, Jiang D, McGuth JC, Du J, Wissler HL, Cai W, Wang RE (2018) A switchable site-specific antibody conjugate. ACS Chem Biol 13(4):958–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, Moy VT, Howarth M (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci 109(12):E690–E697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hartzell EJ, Terr J, Chen W (2021) Engineering a blue light inducible SpyTag system (BLISS). J Am Chem Soc 143(23):8572–8577

    Article  CAS  PubMed  Google Scholar 

  25. Hwang MP, Lee J-W, Lee KE, Lee KH (2013) Think modular: a simple Apoferritin-based platform for the multifaceted detection of pancreatic cancer. ACS Nano 7(9):8167–8174

    Article  CAS  PubMed  Google Scholar 

  26. Chen Q, Sun Q, Molino NM, Wang S-W, Boder ET, Chen W (2015) Sortase A-mediated multi-functionalization of protein nanoparticles. Chem Commun 51(60):12107–12110

    Article  CAS  Google Scholar 

  27. Swartz AR, Chen W (2018) SpyTag/SpyCatcher functionalization of E2 nanocages with stimuli-responsive Z-ELP affinity domains for tunable monoclonal antibody binding and precipitation properties. Bioconjug Chem 29(9):3113–3120

    Article  CAS  PubMed  Google Scholar 

  28. Gao D, McBean N, Schultz JS, Yan YS, Mulchandani A, Chen WF (2006) Fabrication of antibody arrays using thermally responsive elastin fusion proteins. J Am Chem Soc 128(3):676–677

    Article  CAS  PubMed  Google Scholar 

  29. Kostal J, Mulchandani A, Gropp KE, Chen W (2003) A temperature responsive biopolymer for mercury remediation. Environ Sci Technol 37(19):4457–4462

    Article  CAS  PubMed  Google Scholar 

  30. Swartz AR, Sun Q, Chen W (2017) Ligand-induced cross-linking of Z-elastin-like polypeptide-functionalized E2 protein nanoparticles for enhanced affinity precipitation of antibodies. Biomacromolecules 18(5):1654–1659

    Article  CAS  PubMed  Google Scholar 

  31. Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, Otto P, Zimmerman K, Vidugiris G, Machleidt T, Robers MB, Benink HA, Eggers CT, Slater MR, Meisenheimer PL, Klaubert DH, Fan F, Encell LP, Wood KV (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7(11):1848–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen R, Chen Q, Kim H, Siu K-H, Sun Q, Tsai S-L, Chen W (2014) Biomolecular scaffolds for enhanced signaling and catalytic efficiency. Curr Opin Biotechnol 28:59–68

    Article  CAS  PubMed  Google Scholar 

  33. Park M, Sun Q, Liu F, DeLisa MP, Chen W (2014) Positional assembly of enzymes on bacterial outer membrane vesicles for cascade reactions. PLoS One 9(5):6

    Article  Google Scholar 

  34. Li Z, Zhao R, Wu X, Sun Y, Yao M, Li J, Xu Y, Gu J (2005) Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. FASEB J 19(14):1978–1985

    Article  CAS  PubMed  Google Scholar 

  35. Lieser RM, Chen W, Sullivan MO (2019) Controlled epidermal growth factor receptor ligand display on cancer suicide enzymes via unnatural amino acid engineering for enhanced intracellular delivery in breast cancer cells. Bioconjug Chem 30(2):432–442

    Article  CAS  PubMed  Google Scholar 

  36. Chen RP, Blackstock D, Sun Q, Chen W (2018) Dynamic protein assembly by programmable DNA strand displacement. Nat Chem 10(4):474–481

    Article  PubMed  Google Scholar 

  37. Beterams G, Böttcher B, Nassal M (2000) Packaging of up to 240 subunits of a 17 kDa nuclease into the interior of recombinant hepatitis B virus capsids. FEBS Lett 481(2):169–176

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review was supported by grants from NSF (CBE1911950 and DMR1609621).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Millicent O. Sullivan or Wilfred Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sullivan, M.O., Chen, W. (2024). Engineering Hepatitis B Virus (HBV) Protein Particles for Therapeutic Delivery. In: Sullivan, M.O., Chackerian, B., Chen, W. (eds) Therapeutic Proteins. Methods in Molecular Biology, vol 2720. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3469-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3469-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3468-4

  • Online ISBN: 978-1-0716-3469-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics