Skip to main content

Cognitive Enhancement Through Vagus Nerve Stimulation: Methodological Considerations for Behavioral Studies in Rats

  • Protocol
  • First Online:
Vagus Nerve Stimulation

Abstract

Optimal cognition is maintained by a balance of excitatory and inhibitory signaling in brain regions such as the prefrontal cortex and hippocampus. Alterations in excitatory/inhibitory balance are linked to cognitive deficits in aging and a variety of neuropsychiatric disorders. Thus, therapeutic interventions such as electrical vagus nerve stimulation (VNS), which has been shown to modulate excitability and effectively regulate seizure activity in intractable epilepsy, may have benefits for improving cognition. In both humans and rodents, VNS can enhance multiple forms of neuroplasticity and cognition, and recent work from our labs in rats has shown that VNS can reliably enhance cognitive flexibility. In this chapter, we present experimental guidelines and considerations for performing studies of VNS effects on cognition in young and aged rats. Our goal is to provide the reader with examples of specific parameters and methods for conducting such experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaronson ST, Conway CR (2018) Vagus nerve stimulation: changing the paradigm for chronic severe depression? Psychiatr Clin North Am 41(3):409–418

    Article  PubMed  Google Scholar 

  2. Dibué-Adjei M, Kamp MA, Vonck K (2019) 30 years of vagus nerve stimulation trials in epilepsy: do we need neuromodulation-specific trial designs? Epilepsy Res 153:71–75

    Article  PubMed  Google Scholar 

  3. Marrosu F et al (2003) Correlation between GABA(A) receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy. Epilepsy Res 55(1–2):59–70

    Article  CAS  PubMed  Google Scholar 

  4. Chan AY et al (2018) Effect of neurostimulation on cognition and mood in refractory epilepsy. Epilepsia Open 3(1):18–29

    Article  PubMed  PubMed Central  Google Scholar 

  5. Soleman J et al (2018) Improved quality of life and cognition after early vagal nerve stimulator implantation in children. Epilepsy Behav 88:139–145

    Article  PubMed  Google Scholar 

  6. Sun L et al (2017) Vagus nerve stimulation improves working memory performance. J Clin Exp Neuropsychol 39(10):954–964

    Article  PubMed  Google Scholar 

  7. Merrill CA et al (2006) Vagus nerve stimulation in patients with Alzheimer’s disease: additional follow-up results of a pilot study through 1 year. J Clin Psychiatry 67(8):1171–1178

    Article  CAS  PubMed  Google Scholar 

  8. Noble LJ, Souza RR, McIntyre CK (2019) Vagus nerve stimulation as a tool for enhancing extinction in exposure-based therapies. Psychopharmacology (Berl) 236(1):355–367

    Article  CAS  PubMed  Google Scholar 

  9. Olsen LK et al (2022) Vagus nerve stimulation-induced cognitive enhancement: hippocampal neuroplasticity in healthy male rats. Brain Stimul 15(5):1101–1110

    Article  PubMed  Google Scholar 

  10. McQuail JA, Frazier CJ, Bizon JL (2015) Molecular aspects of age-related cognitive decline: the role of GABA signaling. Trends Mol Med 21(7):450–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Haberman RP, Koh MT, Gallagher M (2017) Heightened cortical excitability in aged rodents with memory impairment. Neurobiol Aging 54:144–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bakker A et al (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74(3):467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Palop JJ, Mucke L (2016) Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 17(12):777–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haberman RP, Branch A, Gallagher M (2017) Targeting neural hyperactivity as a treatment to stem progression of late-onset Alzheimer’s disease. Neurotherapeutics 14(3):662–676

    Article  PubMed  PubMed Central  Google Scholar 

  15. Aston-Jones G, Waterhouse B (2016) Locus coeruleus: from global projection system to adaptive regulation of behavior. Brain Res 1645:75–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Poe GR et al (2020) Locus coeruleus: a new look at the blue spot. Nat Rev Neurosci 21(11):644–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chandler DJ, Gao WJ, Waterhouse BD (2014) Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. Proc Natl Acad Sci U S A 111(18):6816–6821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chandler DJ et al (2019) Redefining noradrenergic neuromodulation of behavior: impacts of a modular locus coeruleus architecture. J Neurosci 39(42):8239–8249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hulsey DR et al (2017) Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation. Exp Neurol 289:21–30

    Article  PubMed  Google Scholar 

  20. Groves DA, Bowman EM, Brown VJ (2005) Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat. Neurosci Lett 379(3):174–179

    Article  CAS  PubMed  Google Scholar 

  21. Shen H et al (2012) Vagus nerve stimulation enhances perforant path-CA3 synaptic transmission via the activation of β-adrenergic receptors and the locus coeruleus. Int J Neuropsychopharmacol 15(4):523–530

    Article  CAS  PubMed  Google Scholar 

  22. Roosevelt RW et al (2006) Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res 1119(1):124–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Slater C et al (2022) The neuromodulatory role of the noradrenergic and cholinergic systems and their interplay in cognitive functions: a focused review. Brain Sci 12(7):890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prusky GT et al (2002) Variation in visual acuity within pigmented, and between pigmented and albino rat strains. Behav Brain Res 136(2):339–348

    Article  PubMed  Google Scholar 

  25. Somann JP et al (2018) Chronic cuffing of cervical vagus nerve inhibits efferent fiber integrity in rat model. J Neural Eng 15(3):036018

    Article  PubMed  Google Scholar 

  26. Huston JM et al (2007) Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med 35(12):2762–2768

    PubMed  Google Scholar 

  27. Noller CM et al (2019) Vagus nerve stimulation in rodent models: an overview of technical considerations. Front Neurosci 13:911

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mar AC et al (2013) The touchscreen operant platform for assessing executive function in rats and mice. Nat Protoc 8(10):1985–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Horner AE et al (2013) The touchscreen operant platform for testing learning and memory in rats and mice. Nat Protoc 8(10):1961–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cardinal RN, Aitken MR (2010) Whisker: a client-server high-performance multimedia research control system. Behav Res Methods 42(4):1059–1071

    Article  PubMed  Google Scholar 

  31. Peña DF, Engineer ND, McIntyre CK (2013) Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol Psychiatry 73(11):1071–1077

    Article  PubMed  Google Scholar 

  32. Bizon JL et al (2012) Characterizing cognitive aging of working memory and executive function in animal models. Front Aging Neurosci 4:19

    Article  PubMed  PubMed Central  Google Scholar 

  33. Burke SN, Ryan L, Barnes CA (2012) Characterizing cognitive aging of recognition memory and related processes in animal models and in humans. Front Aging Neurosci 4:15

    Article  PubMed  PubMed Central  Google Scholar 

  34. Foster TC, Defazio RA, Bizon JL (2012) Characterizing cognitive aging of spatial and contextual memory in animal models. Front Aging Neurosci 4:12

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lipman RD et al (1996) Pathologic characterization of brown Norway, brown Norway x Fischer 344, and Fischer 344 x brown Norway rats with relation to age. J Gerontol A Biol Sci Med Sci 51(1):B54–B59

    Article  CAS  PubMed  Google Scholar 

  36. Carter CS et al (2002) Physical performance and longevity in aged rats. J Gerontol A Biol Sci Med Sci 57(5):B193–B197

    Article  PubMed  Google Scholar 

  37. Hickman DL, Swan M (2010) Use of a body condition score technique to assess health status in a rat model of polycystic kidney disease. J Am Assoc Lab Anim Sci 49(2):155–159

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Clark JA et al (1997) Pica behavior associated with buprenorphine administration in the rat. Lab Anim Sci 47(3):300–303

    CAS  PubMed  Google Scholar 

  39. Allen M, Johnson RA (2018) Evaluation of self-injurious behavior, thermal sensitivity, food intake, fecal output, and pica after injection of three buprenorphine formulations in rats (Rattus norvegicus). Am J Vet Res 79(7):697–703

    Article  CAS  PubMed  Google Scholar 

  40. Williams JC et al (2007) Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J Neural Eng 4(4):410–423

    Article  PubMed  Google Scholar 

  41. Dean DA et al (2008) Electrical impedance spectroscopy study of biological tissues. J Electrost 66(3–4):165–177

    Article  CAS  Google Scholar 

  42. Malone IG et al (2021) Electrical epidural stimulation of the cervical spinal cord: implications for spinal respiratory neuroplasticity after spinal cord injury. J Neurophysiol 126(2):607–626

    Article  PubMed  PubMed Central  Google Scholar 

  43. Malone IG et al (2022) Closed-loop, cervical, epidural stimulation elicits respiratory neuroplasticity after spinal cord injury in freely behaving rats. eNeuro 9(1):ENEURO.0426

    Article  PubMed  Google Scholar 

  44. Siniaia MS, Young DL, Poon CS (2000) Habituation and desensitization of the Hering-Breuer reflex in rat. J Physiol 523(Pt 2):479–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bucksot JE et al (2020) Parametric characterization of the rat Hering-Breuer reflex evoked with implanted and non-invasive vagus nerve stimulation. Exp Neurol 327:113220

    Article  PubMed  PubMed Central  Google Scholar 

  46. Butler AG et al (2021) Use of a physiological reflex to standardize vagal nerve stimulation intensity improves data reproducibility in a memory extinction assay. Brain Stimul 14(2):450–459

    Article  PubMed  Google Scholar 

  47. Veale JL, Mark RF, Rees S (1973) Differential sensitivity of motor and sensory fibres in human ulnar nerve. J Neurol Neurosurg Psychiatry 36(1):75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mogyoros I, Kiernan MC, Burke D (1996) Strength-duration properties of human peripheral nerve. Brain 119(Pt 2):439–447

    Article  PubMed  Google Scholar 

  49. Ahmed U et al (2020) Anodal block permits directional vagus nerve stimulation. Sci Rep 10(1):9221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Beas BS, Setlow B, Bizon JL (2016) Effects of acute administration of the GABA(B) receptor agonist baclofen on behavioral flexibility in rats. Psychopharmacology 233(14):2787–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ragozzino ME (2007) The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann N Y Acad Sci 1121:355–375

    Article  PubMed  Google Scholar 

  52. Altidor LK et al (2021) Acute vagus nerve stimulation enhances reversal learning in rats. Neurobiol Learn Mem 184:107498

    Article  PubMed  PubMed Central  Google Scholar 

  53. Buell EP et al (2018) Cortical map plasticity as a function of vagus nerve stimulation rate. Brain Stimul 11(6):1218–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Loerwald KW et al (2018) The interaction of pulse width and current intensity on the extent of cortical plasticity evoked by vagus nerve stimulation. Brain Stimul 11(2):271–277

    Article  PubMed  Google Scholar 

  55. Loerwald KW et al (2018) Varying stimulation parameters to improve cortical plasticity generated by VNS-tone pairing. Neuroscience 388:239–247

    Article  CAS  PubMed  Google Scholar 

  56. Engineer ND et al (2011) Reversing pathological neural activity using targeted plasticity. Nature 470(7332):101–104

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pardo JV et al (2008) Chronic vagus nerve stimulation for treatment-resistant depression decreases resting ventromedial prefrontal glucose metabolism. Neuroimage 42(2):879–889

    Article  PubMed  Google Scholar 

  58. Pavlov VA, Tracey KJ (2012) The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat Rev Endocrinol 8(12):743–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Székely M (2000) The vagus nerve in thermoregulation and energy metabolism. Auton Neurosci 85(1–3):26–38

    Article  PubMed  Google Scholar 

  60. Vijgen GH et al (2013) Vagus nerve stimulation increases energy expenditure: relation to brown adipose tissue activity. PLoS One 8(10):e77221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sanders TH et al (2019) Cognition-enhancing Vagus nerve stimulation alters the epigenetic landscape. J Neurosci 39(18):3454–3469

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Huffman WJ et al (2019) Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul 12(1):19–29

    Article  PubMed  Google Scholar 

  63. Vázquez-Oliver A et al (2020) Auricular transcutaneous vagus nerve stimulation improves memory persistence in naïve mice and in an intellectual disability mouse model. Brain Stimul 13(2):494–498

    Article  PubMed  Google Scholar 

  64. Kwan H et al (2016) Vagus nerve stimulation for treatment of inflammation: systematic review of animal models and clinical studies. Bioelectron Med 3:1–6

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Harvey Ramirez for his expertise and valuable input on animal care and working with aged rats. Supported by NIH RF1 AG067429 (JLB, BS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Bizon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bumanglag, A.V. et al. (2024). Cognitive Enhancement Through Vagus Nerve Stimulation: Methodological Considerations for Behavioral Studies in Rats. In: Frasch, M.G., Porges, E.C. (eds) Vagus Nerve Stimulation . Neuromethods, vol 205. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3465-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3465-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3464-6

  • Online ISBN: 978-1-0716-3465-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics