Skip to main content

Vagal Nerve Stimulation Through the Lens of the Polyvagal Theory: Recruiting Neurophysiological Mechanisms to Dampen Threat Reactions and Promote Homeostatic Functions

  • Protocol
  • First Online:
Vagus Nerve Stimulation

Part of the book series: Neuromethods ((NM,volume 205))

Abstract

Vagal nerve stimulation, when viewed through the lens of the Polyvagal Theory, emphasizes three points. First, it emphasizes the link between the functions of the ventral vagal complex and symptoms reduced by vagal nerve stimulation, which functionally enhance mental and physical health. Second, it shifts the emphasis of vagal nerve stimulation from the entire nerve to select afferent pathways that communicate with brainstem areas that regulate both somatomotor and visceromotor efferent pathways originating in the ventral vagal complex. Third, by documenting the positive impact of vagal nerve stimulation, it acknowledges that trauma and chronic stress can “retune” autonomic function and disrupt the adaptive function of the ventral vagal complex in mitigating threat reactions and optimizing homeostatic functions of health, growth, and restoration. It is anticipated that methods and clinical targets of vagal nerve stimulation will evolve as we become more informed about the specific anatomical pathways traveling through the vagus. As this knowledge becomes integrated into technologies and procedures, there may be a category of vagal neuromodulators that function as neural exercises that would result in a more resilient autonomic nervous system and would not require chronic use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reed SF, Ohel G, David R, Porges SW (1999) A neural explanation of fetal heart rate patterns: a test of the polyvagal theory. Dev Psychobiol 35(2):108–118

    Article  CAS  PubMed  Google Scholar 

  2. Porges SW (2007) The polyvagal perspective. Biol Psychol 74(2):116–143

    Article  PubMed  Google Scholar 

  3. Kolacz J, Lewis GF, Porges SW (2018) The integration of vocal communication and biobehavioral state regulation in mammals: a polyvagal hypothesis. In: Handbook of behavioral neuroscience, vol 25. Elsevier, London, pp 23–34

    Google Scholar 

  4. Porges SW (2009) The polyvagal theory: new insights into adaptive reactions of the autonomic nervous system. Cleve Clin J Med 76(Suppl 2):S86

    Article  PubMed  PubMed Central  Google Scholar 

  5. Porges SW (2011) The polyvagal theory: neurophysiological foundations of emotions, attachment, communication, and self-regulation. W.W. Norton, New York

    Google Scholar 

  6. Porges SW, Lewis GF (2010) The polyvagal hypothesis: common mechanisms mediating autonomic regulation, vocalizations and listening. In: Handbook of behavioral neuroscience, vol 19. Elsevier, London, pp 255–264

    Google Scholar 

  7. Craig AD (2005) Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cogn Sci 9(12):566–571

    Article  PubMed  Google Scholar 

  8. Thayer JF, Lane RD (2000) A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord 61(3):201–216

    Article  CAS  PubMed  Google Scholar 

  9. Carter CS (2021) Oxytocin and love: myths, metaphors, and mysteries. Compr Psychoneuroendocrinol 9:100107

    Article  PubMed  PubMed Central  Google Scholar 

  10. Porges SW (2001) The polyvagal theory: phylogenetic substrates of a social nervous system. Int J Psychophysiol 42(2):123–146

    Article  CAS  PubMed  Google Scholar 

  11. Porges SW (1995) Orienting in a defensive world: mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology 32(4):301–318

    Article  CAS  PubMed  Google Scholar 

  12. Kolacz J, Porges SW (2018) Chronic diffuse pain and functional gastrointestinal disorders after traumatic stress: pathophysiology through a polyvagal perspective. Front Med 5:145

    Article  Google Scholar 

  13. Kolacz J, Kovacic KK, Porges SW (2019) Traumatic stress and the autonomic brain-gut connection in development: polyvagal theory as an integrative framework for psychosocial and gastrointestinal pathology. Dev Psychobiol 61(5):796–809

    Article  PubMed  Google Scholar 

  14. Porges SW (1998) Love: an emergent property of the mammalian autonomic nervous system. Psychoneuroendocrinology 23(8):837–861

    Article  CAS  PubMed  Google Scholar 

  15. Asala SA, Bower AJ (1986) An electron microscope study of vagus nerve composition in the ferret. Anat Embryol 175(2):247–253

    Article  CAS  Google Scholar 

  16. Foley JO, DuBois FS (1937) Quantitative studies of the vagus nerve in the cat: I. the ratio of sensory to motor fibers. J Nerv Ment Dis 86(5):587

    Article  Google Scholar 

  17. Jänig W (1996) Neurobiology of visceral afferent neurons: neuroanatomy, functions, organ regulations and sensations. Biol Psychol 42(1–2):29–51

    Article  PubMed  Google Scholar 

  18. Berthoud HR, Neuhuber WL (2000) Functional and chemical anatomy of the afferent vagal system. Auton Neurosci 85(1–3):1–17

    Article  CAS  PubMed  Google Scholar 

  19. Pereyra PM, Zhang W, Schmidt M, Becker LE (1992) Development of myelinated and unmyelinated fibers of human vagus nerve during the first year of life. J Neurol Sci 110(1–2):107–113

    Article  CAS  PubMed  Google Scholar 

  20. George MS, Sackeim HA, Rush AJ, Marangell LB, Nahas Z, Husain MM et al (2000) Vagus nerve stimulation: a new tool for brain research and therapy∗. Biol Psychiatry 47(4):287–295

    Article  CAS  PubMed  Google Scholar 

  21. Marangell LB, Rush AJ, George MS, Sackeim HA, Johnson CR, Husain MM et al (2002) Vagus nerve stimulation (VNS) for major depressive episodes: one year outcomes. Biol Psychiatry 51(4):280–287

    Article  PubMed  Google Scholar 

  22. Porges SW (2005) The vagus: a mediator of behavioral and physiologic features associated with autism. Neurobiol Autism 2:65–77

    Google Scholar 

  23. Murphy JV, Wheless JW, Schmoll CM (2000) Left vagal nerve stimulation in six patients with hypothalamic hamartomas. Pediatr Neurol 23(2):167–168

    Article  CAS  PubMed  Google Scholar 

  24. Sandberg S, Paton JY, Ahola S, McCann DC, McGuinness D, Hillary CR, Oja H (2000) The role of acute and chronic stress in asthma attacks in children. Lancet 356(9234):982–987

    Article  CAS  PubMed  Google Scholar 

  25. Steyn E, Mohamed Z, Husselman C (2013) Non-invasive vagus nerve stimulation for the treatment of acute asthma exacerbations—results from an initial case series. Int J Emerg Med 6(1):1–3

    Article  Google Scholar 

  26. Kaniusas E, Kampusch S, Szeles JC (2015, April) Depth profiles of the peripheral blood oxygenation in diabetics and healthy subjects in response to auricular electrical stimulation: auricular vagus nerve stimulation as a potential treatment for chronic wounds. In: 2015 IEEE Sensors Applications Symposium (SAS). IEEE, pp 1–6

    Google Scholar 

  27. Brown JW (1974) Prenatal development of the human chief sensory trigeminal nucleus. J Comp Neurol 156(3):307–335

    Article  CAS  PubMed  Google Scholar 

  28. Humphrey T (1978) Function of the nervous system during prenatal life. In: Stave U (ed) Perinatal physiology. Springer, Boston. https://doi.org/10.1007/978-1-4684-2316-7_30

    Chapter  Google Scholar 

  29. Porges SW, Lipsitt LP (1993) Neonatal responsivity to gustatory stimulation: the gustatory-vagal hypothesis. Infant Behav Dev 16(4):487–494. https://doi.org/10.1016/0163-6383(93)80006-t

    Article  Google Scholar 

  30. Loo SK, Salgari GC, Ellis A, Cowen J, Dillon A, McGough JJ (2021) Trigeminal nerve stimulation for attention-deficit/hyperactivity disorder: cognitive and electroencephalographic predictors of treatment response. J Am Acad Child Adolesc Psychiatry 60(7):856–864

    Article  PubMed  Google Scholar 

  31. Kovacic K, Hainsworth K, Sood M, Chelimsky G, Unteutsch R, Nugent M et al (2017) Neurostimulation for abdominal pain-related functional gastrointestinal disorders in adolescents: a randomised, double-blind, sham-controlled trial. Lancet Gastroenterol Hepatol 2(10):727–737

    Article  PubMed  Google Scholar 

  32. Kovacic K, Kolacz J, Lewis GF, Porges SW (2020) Impaired vagal efficiency predicts auricular neurostimulation response in adolescent functional abdominal pain disorders. Am J Gastroenterol 115(9):1534–1538

    Article  PubMed  Google Scholar 

  33. Kardon MB, Peterson DF, Bishop VS (1973) Reflex bradycardia due to aortic nerve stimulation in the rabbit. Am J Physiol 225(1):7–11

    Article  CAS  PubMed  Google Scholar 

  34. Machado BH, Brody MJ (1988) Effect of nucleus ambiguus lesion on the development of neurogenic hypertension. Hypertension 11:135–138

    Article  Google Scholar 

  35. McCabe PM, Yongue BG, Porges SW, Ackles PK (1984) Changes in heart period, heart period variability, and a spectral analysis estimate of respiratory sinus arrhythmias during aortic nerve stimulation in rabbits. Psychophysiology 21(2):149–158

    Article  CAS  PubMed  Google Scholar 

  36. Borg E, Counter SA (1989) The middle-ear muscles. Sci Am 261(2):74–81

    Article  CAS  PubMed  Google Scholar 

  37. Porges SW, Macellaio M, Stanfill SD, McCue K, Lewis GF, Harden ER, Handelman M, Denver J, Bazhenova OV, Heilman KJ (2013) Respiratory sinus arrhythmia and auditory processing in autism: modifiable deficits of an integrated social engagement system? Int J Psychophysiol 88(3):261–270

    Article  PubMed  Google Scholar 

  38. Porges SW, Bazhenova OV, Bal E, Carlson N, Sorokin Y, Heilman KJ et al (2014) Reducing auditory hypersensitivities in autistic spectrum disorder: preliminary findings evaluating the listening project protocol. Front Pediatr 2:80

    Article  PubMed  PubMed Central  Google Scholar 

  39. American National Standards Institute (1997) American National Standard: methods for calculation of the speech intelligibility index. Acoustical Society of America

    Google Scholar 

  40. Porges S (2018) U.S. Patent No. 10,029,068. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  41. Ellrich J (2011) Transcutaneous vagus nerve stimulation. Eur Neurol Rev 6(4):254–256

    Article  Google Scholar 

  42. Frangos E, Ellrich J, Komisaruk BR (2015) Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul 8(3):624–636

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Porges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Porges, S. (2024). Vagal Nerve Stimulation Through the Lens of the Polyvagal Theory: Recruiting Neurophysiological Mechanisms to Dampen Threat Reactions and Promote Homeostatic Functions. In: Frasch, M.G., Porges, E.C. (eds) Vagus Nerve Stimulation . Neuromethods, vol 205. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3465-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3465-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3464-6

  • Online ISBN: 978-1-0716-3465-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics