Skip to main content

Probing Antibody Structures by Hydrogen/Deuterium Exchange Mass Spectrometry

  • Protocol
  • First Online:
Mass Spectrometry-Based Proteomics

Abstract

Hydrogen/deuterium exchange (HDX) followed by mass spectrometry detection (MS) provides a fast, reliable, and detailed solution for the assessment of a protein structure. It has been widely recognized as an indispensable tool and already approved by several regulatory agencies as a structural technique for the validation of protein biopharmaceuticals, including antibody-based drugs. Antibodies are of a key importance in life and medical sciences but considered to be challenging analytical targets because of their compact structure stabilized by disulfide bonds and due to the presence of glycosylation. Despite these difficulties, there are already numerous excellent studies describing MS-based antibody structure characterization. In this chapter, we describe a universal HDX-MS workflow. Deeper attention is paid to sample handling, optimization procedures, and feasibility stages, as these elements of the HDX experiment are crucial for obtaining reliable detailed and spatially well-resolved information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Food and Drug Administration (2018) What are “biologics” questions and answers. http://fdagov/about-fda/center-biologics-evaluation-and-research-cber/what-are-biologics-questions-and-answers. Accessed 18 Jan 2022

  2. The Food and Drug Administration (2018) Definition of the Term “Biological Product” Docket No FDA-2018-N-2732 https://www.fda.gov/media/122985/download and http://fda.gov/media/108557/download. Accessed 31 Jul 2023

  3. Lill JR (2017) Introduction to biotherapeutics. In: Lill JR, Sandoval W (eds) Analytical characterization of biotherapeutics. Wiley, New York

    Chapter  Google Scholar 

  4. Carter PJ (2011) Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res 317:1261–1269

    Article  CAS  PubMed  Google Scholar 

  5. Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26:2700–2707

    Article  CAS  PubMed  Google Scholar 

  6. Henricks LM, Schellens JHM, Huitema ADR, Beijnen JH (2015) The use of combinations of monoclonal antibodies in clinical oncology. Cancer Treat Rev 41:859–867

    Article  CAS  PubMed  Google Scholar 

  7. Salfeld JG (2007) Isotype selection in antibody engineering. Nat Biotechnol 25:1369–1372

    Article  CAS  PubMed  Google Scholar 

  8. Thomson CA (2016) IgG structure and function. In: Delves PJ (ed) Encyclopedia of immunobiology, vol 2E. Academic Press, Cambridge

    Google Scholar 

  9. Liu H, Nowak C, Andrien B et al (2017) Impact of IgG Fc-oligosaccharides on recombinant monoclonal antibody structure, stability, safety, and efficacy. Biotechnol Prog 33:1173–1181

    Article  CAS  PubMed  Google Scholar 

  10. Beck A, Sanglier-Cianférani S, van Dorsselaer A (2012) Biosimilar, biobetter, and next generation antibody characterization by mass spectrometry. Anal Chem 84:4637–4646

    Article  CAS  PubMed  Google Scholar 

  11. Barnes CAS, Lim A (2007) Applications of mass spectrometry for the structural characterization of recombinant protein pharmaceuticals. Mass Spectrom Rev 26:370–388

    Article  Google Scholar 

  12. Srzentić K, Fornelli L, Tsybin YO et al (2020) Interlaboratory study for characterizing monoclonal antibodies by top-down and middle-down mass spectrometry. J Am Soc Mass Spectrom 31(9):1783–1802

    Article  PubMed  PubMed Central  Google Scholar 

  13. James EI, Murphree TA, Vorauer C et al (2021) Advances in hydrogen/deuterium exchange mass spectrometry and the pursuit of challenging biological systems. Chem Rev 122:7562

    Article  PubMed  PubMed Central  Google Scholar 

  14. Engen JR, Botzanowski T, Peterle D et al (2021) Developments in hydrogen/deuterium exchange mass spectrometry. Anal Chem 93:567–582

    Article  CAS  PubMed  Google Scholar 

  15. Englander SW, Mayne L, Bai Y, Sosnick TR (1997) Hydrogen exchange: the modern legacy of Linderstrøm-Lang. Protein Sci 6:1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Englander SW, Mayne L (1992) Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu Rev Biophys Biomol Struct 21:243–265

    Article  CAS  PubMed  Google Scholar 

  17. Blakeley MP, Langan P, Niimura N, Podjarny A (2008) Neutron crystallography: opportunities, challenges, and limitations. Curr Opin Struct Biol 18:593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Z, Smith DL (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci 2:522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kan Z-YY, Walters BT, Mayne L, Englander SW (2013) Protein hydrogen exchange at residue resolution by proteolytic fragmentation mass spectrometry analysis. Proc Natl Acad Sci U S A 110:16438–16443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Englander SW, Kallenbach NR (1983) Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys 16:521–655

    Article  CAS  PubMed  Google Scholar 

  21. Masson GR, Burke JE, Ahn NG et al (2019) Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat Methods 16(7):595–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rand KD, Zehl M, Jensen ON, Jørgensen TJD (2009) Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry. Anal Chem 81:5577–5584

    Article  CAS  PubMed  Google Scholar 

  23. Mistarz UH, Bellina B, Jensen PF et al (2018) UV photodissociation mass spectrometry accurately localize sites of backbone deuteration in peptides. Anal Chem 90:1077–1080

    Article  CAS  PubMed  Google Scholar 

  24. Kadek A, Mrazek H, Halada P et al (2014) Aspartic protease nepenthesin-1 as a tool for digestion in hydrogen/deuterium exchange mass spectrometry. Anal Chem 86:4287–4294

    Article  CAS  PubMed  Google Scholar 

  25. Kadek A, Tretyachenko V, Mrazek H et al (2014) Expression and characterization of plant aspartic protease nepenthesin-1 from Nepenthes gracilis. Protein Expr Purif 95:121–128

    Article  CAS  PubMed  Google Scholar 

  26. Yang M, Hoeppner M, Rey M et al (2015) Recombinant nepenthesin II for hydrogen/deuterium exchange mass spectrometry. Anal Chem 87:6681–6687

    Article  CAS  PubMed  Google Scholar 

  27. Cravello L, Lascoux D, Forest E (2003) Use of different proteases working in acidic conditions to improve sequence coverage and resolution in hydrogen/deuterium exchange of large proteins. Rapid Commun Mass Spectrom 17:2387–2393

    Article  CAS  PubMed  Google Scholar 

  28. Ahn J, Jung MC, Wyndham K et al (2012) Pepsin immobilized on high-strength hybrid particles for continuous flow online digestion at 10,000 psi. Anal Chem 84:7256–7262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ständer S, Grauslund LR, Scarselli M et al (2021) Epitope mapping of polyclonal antibodies by hydrogen-deuterium exchange mass spectrometry (HDX-MS). Anal Chem 93:11669–11678

    Article  PubMed  Google Scholar 

  30. Gramlich M, Hays HCW, Crichton S et al (2021) HDX-MS for epitope characterization of a therapeutic ANTIBODY candidate on the calcium-binding protein annexin-A1. Antibodies 10:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pan J, Zhang S, Chou A, Borchers CH (2016) Higher-order structural interrogation of antibodies using middle-down hydrogen/deuterium exchange mass spectrometry. Chem Sci 7:1480–1486

    Article  CAS  PubMed  Google Scholar 

  32. Jensen PF, Larraillet V, Schlothauer T et al (2015) Investigating the interaction between the neonatal Fc receptor and monoclonal antibody variants by hydrogen/deuterium exchange mass spectrometry. Mol Cell Proteomics 14:148–161

    Article  CAS  PubMed  Google Scholar 

  33. Majumdar R, Manikwar P, Hickey JM et al (2013) Effects of salts from the Hofmeister series on the conformational stability, aggregation propensity, and local flexibility of an IgG1 monoclonal antibody. Biochemistry 52:3376–3389

    Article  CAS  PubMed  Google Scholar 

  34. Hudgens JW, Gallagher ES, Karageorgos I et al (2019) Interlaboratory comparison of hydrogen–deuterium exchange mass spectrometry measurements of the fab fragment of NISTmAb. Anal Chem 91:7336–7345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wei H, Mo J, Tao L et al (2014) Hydrogen/deuterium exchange mass spectrometry for probing higher order structure of protein therapeutics: methodology and applications. Drug Discov Today 19:95–102

    Article  CAS  PubMed  Google Scholar 

  36. Pandit D, Tuske SJ, Coales SJ et al (2012) Mapping of discontinuous conformational epitopes by amide hydrogen/deuterium exchange mass spectrometry and computational docking. J Mol Recognit 25:114–124

    Article  CAS  PubMed  Google Scholar 

  37. Rose RJ, van Berkel PHC, van den Bremer ETJ et al (2013) Mutation of Y407 in the CH3 domain dramatically alters glycosylation and structure of human IgG. mAbs 5:219

    Article  PubMed  PubMed Central  Google Scholar 

  38. Houde D, Peng Y, Berkowitz SA, Engen JR (2010) Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol Cell Proteomics 9:1716–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rey M, Man P, Brandolin G et al (2009) Recombinant immobilized rhizopuspepsin as a new tool for protein digestion in hydrogen/deuterium exchange mass spectrometry. Rapid Commun Mass Spectrom 23:3431–3438

    Article  CAS  PubMed  Google Scholar 

  40. Hamuro Y, Zhang T (2018) High-resolution HDX-MS of cytochrome c using pepsin/fungal protease type XIII mixed bed column. J Am Soc Mass Spectrom 30:227–234

    Article  PubMed  Google Scholar 

  41. Trcka F, Durech M, Man P et al (2014) The assembly and intermolecular properties of the Hsp70-Tomm34-Hsp90 molecular chaperone complex. J Biol Chem 289:9887–9901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wales TE, Eggertson MJ, Engen JR (2013) Considerations in the analysis of hydrogen exchange mass spectrometry data. In: Matthiesen R (ed) Mass spectrometry data analysis in proteomics. Humana Press, Totowa

    Google Scholar 

  43. Filandr F, Kavan D, Kracher D et al (2020) Structural dynamics of lytic polysaccharide monooxygenase during catalysis. Biomol Ther 10(2):242

    CAS  Google Scholar 

  44. Cline DJ, Redding SE, Brohawn SG et al (2004) New water-soluble phosphines as reductants of peptide and protein disulfide bonds: reactivity and membrane permeability. Biochemistry 43:15195–15203

    Article  CAS  PubMed  Google Scholar 

  45. Trabjerg E, Jakobsen RU, Mysling S et al (2015) Conformational analysis of large and highly disulfide-stabilized proteins by integrating online electrochemical reduction into an optimized H/D exchange mass spectrometry workflow. Anal Chem 87:8880–8888

    Article  CAS  PubMed  Google Scholar 

  46. Comamala G, Krogh CC, Nielsen VS et al (2021) Hydrogen/deuterium exchange mass spectrometry with integrated electrochemical reduction and microchip-enabled deglycosylation for epitope mapping of heavily glycosylated and disulfide-bonded proteins. Anal Chem 93:16330–16340

    Article  CAS  PubMed  Google Scholar 

  47. Majumdar R, Esfandiary R, Bishop SM et al (2015) Correlations between changes in conformational dynamics and physical stability in a mutant IgG1 mAb engineered for extended serum half-life. mAbs 7:84–95

    Article  CAS  PubMed  Google Scholar 

  48. Toth RT, Pace SE, Mills BJ et al (2018) Evaluation of hydrogen exchange mass spectrometry as a stability-indicating method for formulation excipient screening for an IgG4 monoclonal antibody. J Pharm Sci 107:1009–1019

    Article  CAS  PubMed  Google Scholar 

  49. Mullahoo J, Zhang T, Clauser K et al (2020) Dual protease type XIII/pepsin digestion offers superior resolution and overlap for the analysis of histone tails by HX-MS. Methods 184:135–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kuhne F, Bonnington L, Malik S et al (2019) The impact of immunoglobulin G1 Fc sialylation on backbone amide H/D exchange. Antibodies 8:49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kadek A, Kavan D, Marcoux J et al (2017) Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics. Biochim Biophys Acta Gen Subj 1861:157–167

    Article  CAS  PubMed  Google Scholar 

  52. Vankova P, Salido E, Timson DJ et al (2019) A dynamic core in human NQO1 controls the functional and stability effects of ligand binding and their communication across the enzyme dimer. Biomol Ther 9(11):728

    CAS  Google Scholar 

  53. Moroco JA, Engen JR (2015) Replication in bioanalytical studies with HDX MS: aim as high as possible. Bioanalysis 7:1065–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lindner R, Lou X, Reinstein J et al (2014) Hexicon 2: automated processing of hydrogen-deuterium exchange mass spectrometry data with improved deuteration distribution estimation. J Am Soc Mass Spectrom 25:1018–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Raval S, Sarpe V, Hepburn M et al (2021) Improving spectral validation rates in hydrogen-deuterium exchange data analysis. Anal Chem 93:4246–4254

    Article  CAS  PubMed  Google Scholar 

  56. Kan Z-Y, Ye X, Skinner JJ et al (2019) ExMS2: an integrated solution for hydrogen-deuterium exchange mass spectrometry data analysis. Anal Chem 91:7474–7481

    Article  CAS  PubMed  Google Scholar 

  57. Filandrova R, Kavan D, Kadek A et al (2021) Studying protein-DNA interactions by hydrogen/deuterium exchange mass spectrometry. Methods Mol Biol 2247:193–219

    Article  CAS  PubMed  Google Scholar 

  58. Trcka F, Durech M, Vankova P et al (2020) The interaction of the mitochondrial protein importer TOMM34 with HSP70 is regulated by TOMM34 phosphorylation and binding to 14-3-3 adaptors. J Biol Chem 295:8928–8944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Houde D, Berkowitz SA, Engen JR (2011) The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. J Pharm Sci 100:2071–2086

    Article  CAS  PubMed  Google Scholar 

  60. Mendillo ML, Putnam CD, Mo AO et al (2010) Probing DNA- and ATP-mediated conformational changes in the MutS family of mispair recognition proteins using deuterium exchange mass spectrometry. J Biol Chem 285:13170–13182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lau AM, Claesen J, Hansen K, Politis A (2021) Deuteros 2.0: peptide-level significance testing of data from hydrogen deuterium exchange mass spectrometry. Bioinformatics 37:270–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Waterhouse A, Bertoni M, Bienert S et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 54:5.6.1–5.6.37

    Article  PubMed  Google Scholar 

  64. Rey M, Mrázek H, Pompach P et al (2010) Effective removal of nonionic detergents in protein mass spectrometry, hydrogen/deuterium exchange, and proteomics. Anal Chem 82:5107–5116

    Article  CAS  PubMed  Google Scholar 

  65. Man P, Montagner C, Vitrac H et al (2010) Accessibility changes within diphtheria toxin T domain when in the functional molten globule state, as determined using hydrogen/deuterium exchange measurements. FEBS J 277:653–662

    Article  CAS  PubMed  Google Scholar 

  66. Glasoe PK, Long FA (2002) Use of glass electrodes to measure acidities in deuterium oxide. J Phys Chem 64:188–190

    Article  Google Scholar 

  67. Calvaresi V, Truelsen LT, Larsen SB et al (2021) Conformational dynamics of free and membrane-bound human Hsp70 in model cytosolic and endo-lysosomal environments. Commun Biol 4:1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guo C, Steinberg LK, Henderson JP, Gross ML (2020) Organic solvents for enhanced proteolysis of stable proteins for hydrogen-deuterium exchange mass spectrometry. Anal Chem 92:11553–11557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Burns KM, Rey M, Baker CAH, Schriemer DC (2013) Platform dependencies in bottom-up hydrogen/deuterium exchange mass spectrometry. Mol Cell Proteomics 12:539–548

    Article  CAS  PubMed  Google Scholar 

  70. Wollenberg DTW, Wollenberg DTW, Pengelley S et al (2020) Avoiding H/D scrambling with minimal ion transmission loss for HDX-MS/MS-ETD analysis on a high-resolution Q-TOF mass spectrometer. Anal Chem 92:7453–7461

    Article  CAS  PubMed  Google Scholar 

  71. Majumdar R, Manikwar P, Hickey JM et al (2012) Minimizing carry-over in an online pepsin digestion system used for the H/D exchange mass spectrometric analysis of an IgG1 monoclonal antibody. J Am Soc Mass Spectrom 23:2140–2148

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support from Horizon 2020, EPIC-XS (project number—82383), and Czech Science Foundation 22-27695S is gratefully acknowledged. Additional support was obtained from EU/MEYS projects BioCeV (CZ.1.05/1.1.00/02.0109). L.F. also thanks GAUK project 359221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Man .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kalaninová, Z., Fojtík, L., Chmelík, J., Novák, P., Volný, M., Man, P. (2023). Probing Antibody Structures by Hydrogen/Deuterium Exchange Mass Spectrometry. In: Gevaert, K. (eds) Mass Spectrometry-Based Proteomics. Methods in Molecular Biology, vol 2718. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3457-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3457-8_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3456-1

  • Online ISBN: 978-1-0716-3457-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics