Skip to main content

The Future of Drug Development with Quantum Computing

  • Protocol
  • First Online:
High Performance Computing for Drug Discovery and Biomedicine

Abstract

Novel medication development is a time-consuming and expensive multistage procedure. Recent technology developments have lowered timeframes, complexity, and cost dramatically. Current research projects are driven by AI and machine learning computational models. This chapter will introduce quantum computing (QC) to drug development issues and provide an in-depth discussion of how quantum computing may be used to solve various drug discovery problems. We will first discuss the fundamentals of QC, a review of known Hamiltonians, how to apply Hamiltonians to drug discovery challenges, and what the noisy intermediate-scale quantum (NISQ) era methods and their limitations are.

We will further discuss how these NISQ era techniques can aid with specific drug discovery challenges, including protein folding, molecular docking, AI−/ML-based optimization, and novel modalities for small molecules and RNA secondary structures. Consequently, we will discuss the latest QC landscape’s opportunities and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADMET:

Absorption, distribution, metabolism, excretion, and toxicity

DNA:

Deoxyribonucleic acid

GAN:

Generative adversarial networks

NISQ:

Noisy intermediate-scale quantum

QA:

Quantum annealing

QC:

Quantum compute

QAOA:

Quantum approximate optimization algorithm

QBM:

Quantum Boltzmann machine

QGM:

Quantum generative adversarial network model

QGA:

Quantum genetic algorithms

QuANN:

Quantum artificial neural network

QMCTS:

Quantum Monte Carlo tree search

QMC:

Quantum Monte Carlo

QMD:

Quantum molecular dynamics

QML:

Quantum machine learning

QPCA:

Quantum principle component analysis

QPE:

Quantum phase estimation

QSVM:

Quantum support vector machine

QVC:

Quantum variational classifier

QW:

Quantum walk

SNP:

Single nucleotide polymorphism

TF:

Transcription factor

VQE:

Variational quantum eigensolver

References

  1. Sension RJ (2007) Quantum path to photosynthesis. Nature 446:740–741. https://doi.org/10.1038/446740a

    Article  CAS  PubMed  Google Scholar 

  2. Panitchayangkoon G, Hayes D, Fransted KA et al (2010) Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc Natl Acad Sci U S A 107:12766–12770. https://doi.org/10.1073/PNAS.1005484107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Higgins JS, Lloyd LT, Sohail SH et al (2021) Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer. Proc Natl Acad Sci U S A 118:e2018240118. https://doi.org/10.1073/PNAS.2018240118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nielsen MA, Chuang IL (2010) Fundamental concepts. In: Quantum computation and quantum information, 10th Ann edn. Cambridge University Press, pp 1–58

    Google Scholar 

  5. Treinish M, Gambetta J, Thomas S, et al (2023) Qiskit/qiskit: Qiskit 0.42.1. In: https://github.com/Qiskit. https://zenodo.org/record/7757946. Accessed 25 Apr 2023

  6. Claudino D (2022) The basics of quantum computing for chemists. Int J Quantum Chem 122:e26990. https://doi.org/10.1002/qua.26990

    Article  CAS  Google Scholar 

  7. Cordier BA, Sawaya NPD, Guerreschi GG, Mcweeney SK (2022) Biology and medicine in the landscape of quantum advantages. J R Soc Interface 19. https://doi.org/10.1098/RSIF.2022.0541

  8. Lanyon BP, Whitfield JD, Gillett GG et al (2010) Towards quantum chemistry on a quantum computer. Nat Chem 2:106–111. https://doi.org/10.1038/nchem.483

    Article  CAS  PubMed  Google Scholar 

  9. Arrazola JM, Bergholm V, Brádler K et al (2021) Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591:54–60. https://doi.org/10.1038/S41586-021-03202-1

    Article  CAS  PubMed  Google Scholar 

  10. Weigold M, Barzen J, Leymann F, Salm M (2021) Encoding patterns for quantum algorithms. IET Quantum Commun 2:141–152. https://doi.org/10.1049/QTC2.12032

    Article  Google Scholar 

  11. Djordjevic I (2012) Quantum circuits and quantum information processing fundamentals. In: Quantum information processing and quantum error correction: an engineering approach. Academic, Amsterdam, pp 91–117

    Chapter  Google Scholar 

  12. Rajak A, Suzuki S, Dutta A, Chakrabarti BK (2023) Quantum annealing: an overview. Phil Trans R Soc A 381. https://doi.org/10.1098/RSTA.2021.0417

  13. Born M, Fock V (1928) Beweis des Adiabatensatzes. Z Phys 51:165–180. https://doi.org/10.1007/BF01343193/METRICS

    Article  CAS  Google Scholar 

  14. Domino K, Koniorczyk M, Krawiec K et al (2023) Quantum annealing in the NISQ era: railway conflict management. Entropy 25:e25020191. https://doi.org/10.3390/E25020191

    Article  Google Scholar 

  15. Lechner W, Hauke P, Zoller P (2015) A quantum annealing architecture with all-to-all connectivity from local interactions. Sci Adv 1:e150083. https://doi.org/10.1126/SCIADV.1500838

    Article  Google Scholar 

  16. Prokhorov LV (2008) Hamiltonian mechanics and its generalizations. Phys Part Nucl 39:810–833. https://doi.org/10.1134/S1063779608050055

    Article  Google Scholar 

  17. Fedorov DA, Peng B, Govind N, Alexeev Y (2022) VQE method: a short survey and recent developments. Mater Theory 6:1–21. https://doi.org/10.1186/S41313-021-00032-6

    Article  Google Scholar 

  18. Cruz PMQ, Catarina G, Gautier R, Fernandez-Rossier J (2020) Optimizing quantum phase estimation for the simulation of Hamiltonian eigenstates. Quantum Sci Technol 5:044005. https://doi.org/10.1088/2058-9565/ABAA2C

    Article  Google Scholar 

  19. Wang Z, Hadfield S, Jiang Z, Rieffel EG (2018) Quantum approximate optimization algorithm for MaxCut: a fermionic view. Phys Rev A (Coll Park) 97:022304. https://doi.org/10.1103/PHYSREVA.97.022304

    Article  CAS  Google Scholar 

  20. Zhou L, Wang ST, Choi S et al (2020) Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys Rev X 10:021067. https://doi.org/10.1103/PHYSREVX.10.021067

    Article  CAS  Google Scholar 

  21. Low GH, Chuang IL (2019) Hamiltonian simulation by Qubitization. Quantum 3:163. https://doi.org/10.22331/q-2019-07-12-163

    Article  Google Scholar 

  22. Boixo S, Rønnow TF, Isakov SV et al (2014) Evidence for quantum annealing with more than one hundred qubits. Nat Phys 10:218–224. https://doi.org/10.1038/nphys2900

    Article  CAS  Google Scholar 

  23. Ladd TD, Jelezko F, Laflamme R et al (2010) Quantum computers. Nature 464:45–53. https://doi.org/10.1038/nature08812

    Article  CAS  PubMed  Google Scholar 

  24. Loss D, DiVincenzo DP (1998) Quantum computation with quantum dots. Phys Rev A (Coll Park) 57:120. https://doi.org/10.1103/PhysRevA.57.120

    Article  CAS  Google Scholar 

  25. Bayerstadler A, Becquin G, Binder J et al (2021) Industry quantum computing applications. EPJ Quantum Technol 8:25. https://doi.org/10.1140/EPJQT/S40507-021-00114-X

    Article  Google Scholar 

  26. Castelvecchi D (2022) The race to save the internet from quantum hackers. Nature 602:198–201. https://doi.org/10.1038/D41586-022-00339-5

    Article  CAS  PubMed  Google Scholar 

  27. Castelvecchi D (2023) Are quantum computers about to break online privacy? Nature 613:221–222. https://doi.org/10.1038/D41586-023-00017-0

    Article  CAS  PubMed  Google Scholar 

  28. Yin J, Li YH, Liao SK et al (2020) Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582:501–505. https://doi.org/10.1038/s41586-020-2401-y

    Article  CAS  PubMed  Google Scholar 

  29. Ma H, Govoni M, Galli G (2020) Quantum simulations of materials on near-term quantum computers. NPJ Comput Mater 6:1–8. https://doi.org/10.1038/s41524-020-00353-z

    Article  Google Scholar 

  30. Liu H, Elstner M, Kaxiras E et al (2001) Quantum mechanics simulation of protein dynamics on long timescale. Proteins Struct Funct Bioinform 44:484–489. https://doi.org/10.1002/PROT.1114

    Article  CAS  Google Scholar 

  31. Cheng HP, Deumens E, Freericks JK et al (2020) Application of quantum computing to biochemical systems: a look to the future. Front Chem 8:1066. https://doi.org/10.3389/FCHEM.2020.587143

    Article  Google Scholar 

  32. Maheshwari D, Garcia-Zapirain B, Sierra-Sosa D (2022) Quantum machine learning applications in the biomedical domain: a systematic review. IEEE Access 10:80463–80484. https://doi.org/10.1109/ACCESS.2022.3195044

    Article  Google Scholar 

  33. Outeiral C, Strahm M, Shi J et al (2021) The prospects of quantum computing in computational molecular biology. Wiley Interdiscip Rev Comput Mol Sci 11:e1481. https://doi.org/10.1002/WCMS.1481

    Article  CAS  Google Scholar 

  34. Weidner FM, Schwab JD, Wölk S et al (2023) Leveraging quantum computing for dynamic analyses of logical networks in systems biology. Patterns 4:100705. https://doi.org/10.1016/J.PATTER.2023.100705

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lau B, Emani PS, Chapman J et al (2023) Insights from incorporating quantum computing into drug design workflows. Bioinformatics 39:btac789. https://doi.org/10.1093/bioinformatics/btac789

    Article  CAS  PubMed  Google Scholar 

  36. Aboussalah AM, Chi C, Lee CG (2023) Quantum computing reduces systemic risk in financial networks. Sci Rep 13:3990. https://doi.org/10.1038/s41598-023-30710-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Robert A, Barkoutsos PK, Woerner S, Tavernelli I (2021) Resource-efficient quantum algorithm for protein folding. npj Quantum Inf 7:38. https://doi.org/10.1038/s41534-021-00368-4

    Article  Google Scholar 

  38. Casares PAM, Campos R, Martin-Delgado MA (2022) QFold: quantum walks and deep learning to solve protein folding. Quantum Sci Technol 7:025013. https://doi.org/10.1088/2058-9565/AC4F2F

    Article  Google Scholar 

  39. Ezawa M (2022) Variational quantum support vector machine based on Gamma matrix expansion and variational universal-quantum-state generator. Sci Rep 12:6758. https://doi.org/10.1038/s41598-022-10677-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fellous-Asiani M, Chai JH, Whitney RS et al (2021) Limitations in quantum computing from resource constraints. PRX Quantum 2:040335. https://doi.org/10.1103/PRXQUANTUM.2.040335

    Article  Google Scholar 

  41. Ge X, Wu RB, Rabitz H (2022) The optimization landscape of hybrid quantum–classical algorithms: from quantum control to NISQ applications. Annu Rev Control 54:314–323. https://doi.org/10.1016/J.ARCONTROL.2022.06.001

    Article  Google Scholar 

  42. Tilly J, Chen H, Cao S et al (2022) The variational quantum eigensolver: a review of methods and best practices. Phys Rep 986:1–128. https://doi.org/10.1016/J.PHYSREP.2022.08.003

    Article  Google Scholar 

  43. Peruzzo A, McClean J, Shadbolt P et al (2014) A variational eigenvalue solver on a photonic quantum processor. Nat Commun 5:4213–4220. https://doi.org/10.1038/NCOMMS5213

    Article  CAS  PubMed  Google Scholar 

  44. Parrish RM, Hohenstein EG, McMahon PL, Martínez TJ (2019) Quantum computation of electronic transitions using a variational quantum eigensolver. Phys Rev Lett 122:401. https://doi.org/10.1103/PhysRevLett.122.230401

    Article  Google Scholar 

  45. Mansuroglu R, Eckstein T, Nützel L et al (2023) Variational Hamiltonian simulation for translational invariant systems via classical pre-processing. Quantum Sci Technol 8. https://doi.org/10.1088/2058-9565/ACB1D0

  46. Rosenbrock HH (1985) A variational principle for quantum mechanics. Phys Lett A 110:343–346. https://doi.org/10.1016/0375-9601(85)90050-7

    Article  Google Scholar 

  47. Grimsley HR, Economou SE, Barnes E, Mayhall NJ (2019) An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat Commun 10:1–9. https://doi.org/10.1038/s41467-019-10988-2

    Article  CAS  Google Scholar 

  48. Kandala A, Mezzacapo A, Temme K et al (2017) Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549:242–246. https://doi.org/10.1038/NATURE23879

    Article  CAS  PubMed  Google Scholar 

  49. Ma H, Fan Y, Liu J, et al (2022) Divide-and-conquer variational quantum algorithms for large-scale electronic structure simulations. arXiv paper. https://doi.org/10.48550/arXiv.2208.14789

  50. Sarkar A, Al-Ars Z, Almudever CG, Bertels KLM (2021) QiBAM: approximate sub-string index search on quantum accelerators applied to DNA read alignment. Electronics (Basel) 10:2433. https://doi.org/10.3390/ELECTRONICS10192433

    Article  CAS  Google Scholar 

  51. Farhi E, Goldstone J, Gutmann S, Zhou L (2022) The quantum approximate optimization algorithm and the Sherrington-Kirkpatrick model at infinite size. Quantum 6:759. https://doi.org/10.22331/q-2022-07-07-759

    Article  Google Scholar 

  52. Guerreschi GG, Matsuura AY (2019) QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. Sci Rep 9:6903. https://doi.org/10.1038/s41598-019-43176-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jain N, Coyle B, Kashefi E, Kumar N (2022) Graph neural network initialisation of quantum approximate optimisation. Quantum 6:861. 10.22331/q-2022-11-17-861

    Google Scholar 

  54. Narayanan A, Menneer T (2000) Quantum artificial neural network architectures and components. Inf Sci (N Y) 128:231–255. https://doi.org/10.1016/S0020-0255(00)00055-4

    Article  Google Scholar 

  55. Acampora G, Schiattarella R (2021) Deep neural networks for quantum circuit mapping. Neural Comput Appl 33:13723–13743. https://doi.org/10.1007/S00521-021-06009-3

    Article  Google Scholar 

  56. Sagingalieva A, Kordzanganeh M, Kenbayev N, et al (2022) Hybrid quantum neural network for drug response prediction

    Google Scholar 

  57. Broughton M, Verdon G, McCourt T, et al (2020) TensorFlow quantum: a software framework for quantum machine learning. Arxiv paper 12:23. https://doi.org/10.48550/arXiv.2003.02989

  58. Biamonte J, Wittek P, Pancotti N et al (2017) Quantum machine learning. Nature 549:195–202. https://doi.org/10.1038/nature23474

    Article  CAS  PubMed  Google Scholar 

  59. Banchi L, Pereira J, Pirandola S (2021) Generalization in quantum machine learning: a quantum information standpoint. PRX Quantum 2:040321. https://doi.org/10.1103/PRXQUANTUM.2.040321/FIGURES/6/MEDIUM

    Article  Google Scholar 

  60. McClean JR, Boixo S, Smelyanskiy VN et al (2018) Barren plateaus in quantum neural network training landscapes. Nat Commun 9:4812. https://doi.org/10.1038/s41467-018-07090-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Farhi E, Harrow AW (2019) Quantum supremacy through the quantum approximate optimization algorithm. Arxiv paper. https://doi.org/10.48550/arXiv.1602.07674

  62. Fingerhuth M, Babej T, Ing C (2018) A quantum alternating operator ansatz with hard and soft constraints for lattice protein folding. Arxiv paper. https://doi.org/10.48550/arXiv.1810.13411

  63. Barrett J, Lorenz R, Oreshkov O (2021) Cyclic quantum causal models. Nat Commun 12:1–15. https://doi.org/10.1038/s41467-020-20456-x

    Article  CAS  Google Scholar 

  64. Boev AS, Rakitko AS, Usmanov SR et al (2021) Genome assembly using quantum and quantum-inspired annealing. Sci Rep 11:13183. https://doi.org/10.1038/s41598-021-88321-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. de Souza LS, de Carvalho JHA, Ferreira TAE (2022) Classical artificial neural network training using quantum walks as a search procedure. IEEE Trans Comput 71:378–389. https://doi.org/10.1109/TC.2021.3051559

    Article  Google Scholar 

  66. Montanaro A (2015) Quantum speedup of Monte Carlo methods. Proc R Soc A Math Phys Eng Sci 471. https://doi.org/10.1098/RSPA.2015.0301

  67. Gaidai I, Babikov D, Teplukhin A, et al (2022) Molecular dynamics on quantum annealers. Sci Rep 2022 12:112:16824. https://doi.org/10.1038/s41598-022-21163-x

  68. Miessen A, Ollitrault PJ, Tavernelli I (2021) Quantum algorithms for quantum dynamics: a performance study on the spin-boson model. Phys Rev Res 3:4229–4238. https://doi.org/10.1103/PhysRevResearch.3.043212

    Article  Google Scholar 

  69. Fedorov DA, Otten MJ, Gray SK, Alexeev Y (2021) Ab initio molecular dynamics on quantum computers. J Chem Phys 154:164103. https://doi.org/10.1063/5.0046930/13975532

    Article  CAS  PubMed  Google Scholar 

  70. Kirsopp JJM, Di Paola C, Manrique DZ et al (2022) Quantum computational quantification of protein–ligand interactions. Int J Quantum Chem 122:e26975. https://doi.org/10.1002/QUA.26975

    Article  CAS  Google Scholar 

  71. King AD, Raymond J, Lanting T et al (2023) Quantum critical dynamics in a 5,000-qubit programmable spin glass. Nature 2023:1–6. https://doi.org/10.1038/s41586-023-05867-2

    Article  CAS  Google Scholar 

  72. Allcock J, Vangone A, Meyder A et al (2022) The prospects of Monte Carlo antibody loop modelling on a fault-tolerant quantum computer. Front Drug Discov 2:13. https://doi.org/10.3389/FDDSV.2022.908870

    Article  Google Scholar 

  73. Ghamari D, Hauke P, Covino R, Faccioli P (2022) Sampling rare conformational transitions with a quantum computer. Sci Rep 12:16336. https://doi.org/10.1038/s41598-022-20032-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li J, Topaloglu RO, Ghosh S (2021) Quantum generative models for small molecule drug discovery. IEEE Trans Quantum Eng 2:1. https://doi.org/10.1109/TQE.2021.3104804

    Article  Google Scholar 

  75. Moussa C, Wang H, Araya-Polo M, et al (2023) Application of quantum-inspired generative models to small molecular datasets. Arxiv paper. https://doi.org/10.48550/arXiv.2304.10867

  76. Andersson MP, Jones MN, Mikkelsen KV et al (2022) Quantum computing for chemical and biomolecular product design. Curr Opin Chem Eng 36:100754. https://doi.org/10.1016/J.COCHE.2021.100754

    Article  Google Scholar 

  77. The Ising Model. https://web.stanford.edu/~jeffjar/statmech/intro4.html. Accessed 26 Apr 2023

  78. Verresen R (2023) Everything is a quantum Ising model. https://doi.org/10.48550/arXiv.2301.11917

  79. Arovas DP, Berg E, Kivelson SA, Raghu S (2022) The Hubbard model. Annu Rev Condens Matter Phys 13:239–274. https://doi.org/10.1146/ANNUREV-CONMATPHYS-031620-102024

    Article  Google Scholar 

  80. Aksela SS, Turunen P, Kantia T et al (2011) Quantum simulation of the transverse Ising model with trapped ions. New J Phys 13:105003. https://doi.org/10.1088/1367-2630/13/10/105003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhushan Bonde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bonde, B., Patil, P., Choubey, B. (2024). The Future of Drug Development with Quantum Computing. In: Heifetz, A. (eds) High Performance Computing for Drug Discovery and Biomedicine. Methods in Molecular Biology, vol 2716. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3449-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3449-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3448-6

  • Online ISBN: 978-1-0716-3449-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics