Abstract
Prediction of the structure of protein complexes by docking methods is a well-established research field. The intermolecular energy landscapes in protein–protein interactions can be used to refine docking predictions and to detect macro-characteristics, such as the binding funnel. A new GRAMM web server for protein docking predicts a spectrum of docking poses that characterize the intermolecular energy landscape in protein interaction. A user-friendly interface provides options to choose free or template-based docking, as well as other advanced features, such as clustering of the docking poses, and interactive visualization of the docked models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vakser IA (2014) Protein-protein docking: from interaction to interactome. Biophys J 107:1785–1793
Moal IH, Moretti R, Baker D, Fernandez-Recio J (2013) Scoring functions for protein–protein interactions. Curr Opin Struct Biol 23:862–867
Singh A, Dauzhenka T, Kundrotas PJ, Sternberg MJE, Vakser IA (2020) Application of docking methodologies to modeled proteins. Proteins 88:1180–1188
Kundrotas PJ, Zhu Z, Janin J, Vakser IA (2021) Templates are available to model nearly all complexes of structurally characterized proteins. Proc Natl Acad Sci U S A 109:9438–9441
Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T et al (2022) Protein complex prediction with AlphaFold-Multimer. bioRxiv. https://doi.org/10.1101/2021.10.04.463034
Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR et al (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–876
Gao M, Nakajima An D, Parks JM, Skolnick J (2022) AF2Complex predicts direct physical interactions in multimeric proteins with deep learning. Nat Commun 13:1744
Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C et al (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12:255–278
de Vries SJ, van Dijk M, Bonvin AM (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897
Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30:1771–1773
Macindoe G, Mavridis L, Venkatraman V, Devignes MD, Ritchie DW (2010) HexServer: An FFT-based protein docking server powered by graphics processors. Nucleic Acids Res 38:W445–W449
de Vries SJ, Schindler CE, Chauvot de Beauchene I, Zacharias M (2015) A web interface for easy flexible protein-protein docking with ATTRACT. Biophys J 108:462–465
Ogmen U, Keskin O, Aytuna AS, Nussinov R, Gursoy A (2005) PRISM: protein interactions by structural matching. Nucleic Acids Res 33:W331–W3W6
Torchala M, Moal IH, Chaleil RA, Fernandez-Recio J, Bates PA (2013) SwarmDock: a server for flexible protein-protein docking. Bioinformatics 29:807–809
Jimenez-Garcia B, Pons C, Fernandez-Recio J (2013) pyDockWEB: a web server for rigid-body protein-protein docking using electrostatics and desolvation scoring. Bioinformatics 29:1698–1699
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367
Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36:W233–W238
Ramirez-Aportela E, Lopez-Blanco JR, Chacon P (2016) FRODOCK 2.0: fast protein-protein docking server. Bioinformatics 32:2386–2388
Christoffer C, Bharadwaj V, Luu R, Kihara D (2021) LZerD protein-protein docking webserver enhanced with de novo structure prediction. Front Mol Biosci 8:724947
Yan Y, Zhang D, Zhou P, Li B, Huang SY (2017) HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res 45:W365–WW73
Quignot C, Postic G, Bret H, Rey J, Granger P, Murail S et al (2021) InterEvDock3: a combined template-based and free docking server with increased performance through explicit modeling of complex homologs and integration of covariation-based contact maps. Nucleic Acids Res 49:W277–WW84
Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34:W310–W314
Vakser IA, Grudinin S, Jenkins NW, Kundrotas PJ, Deeds EJ (2022) Docking-based long timescale simulation of cell-size protein systems at atomic resolution. Proc Natl Acad Sci U S A 119:e2210249119
Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89:2195–2199
Vakser IA (1995) Protein docking for low-resolution structures. Protein Eng 8:371–377
Lorenzen S, Zhang Y (2007) Identification of near-native structures by clustering protein docking conformations. Proteins 68:187–194
Lensink MF, Wodak SJ (2013) Docking, scoring, and affinity prediction in CAPRI. Proteins 81:2082–2095
Sinha R, Kundrotas PJ, Vakser IA (2010) Docking by structural similarity at protein-protein interfaces. Proteins 78:3235–3241
Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33:2302–2309
Kundrotas PJ, Anishchenko I, Badal VD, Das M, Dauzhenka T, Vakser IA (2018) Modeling CAPRI targets 110-120 by template-based and free docking using contact potential and combined scoring function. Proteins 86(Suppl 1):302–310
Collins KW, Copeland MM, Kotthoff I, Singh A, Kundrotas PJ, Vakser IA (2022) DOCKGROUND resource for protein recognition studies. Protein Sci 31:e4481
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242
Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org
Acknowledgments
This study was supported by NIH grant R01GM074255 and NSF grant DBI1917263. The authors wish to acknowledge the contribution of Andrey Tovchigrechko who wrote the previous version of the server (GRAMM-X).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Singh, A., Copeland, M.M., Kundrotas, P.J., Vakser, I.A. (2024). GRAMM Web Server for Protein Docking. In: Gore, M., Jagtap, U.B. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 2714. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3441-7_5
Download citation
DOI: https://doi.org/10.1007/978-1-0716-3441-7_5
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-3440-0
Online ISBN: 978-1-0716-3441-7
eBook Packages: Springer Protocols