Skip to main content

GRAMM Web Server for Protein Docking

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2714))

Abstract

Prediction of the structure of protein complexes by docking methods is a well-established research field. The intermolecular energy landscapes in protein–protein interactions can be used to refine docking predictions and to detect macro-characteristics, such as the binding funnel. A new GRAMM web server for protein docking predicts a spectrum of docking poses that characterize the intermolecular energy landscape in protein interaction. A user-friendly interface provides options to choose free or template-based docking, as well as other advanced features, such as clustering of the docking poses, and interactive visualization of the docked models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vakser IA (2014) Protein-protein docking: from interaction to interactome. Biophys J 107:1785–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Moal IH, Moretti R, Baker D, Fernandez-Recio J (2013) Scoring functions for protein–protein interactions. Curr Opin Struct Biol 23:862–867

    Article  CAS  PubMed  Google Scholar 

  3. Singh A, Dauzhenka T, Kundrotas PJ, Sternberg MJE, Vakser IA (2020) Application of docking methodologies to modeled proteins. Proteins 88:1180–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kundrotas PJ, Zhu Z, Janin J, Vakser IA (2021) Templates are available to model nearly all complexes of structurally characterized proteins. Proc Natl Acad Sci U S A 109:9438–9441

    Article  Google Scholar 

  5. Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T et al (2022) Protein complex prediction with AlphaFold-Multimer. bioRxiv. https://doi.org/10.1101/2021.10.04.463034

  6. Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR et al (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gao M, Nakajima An D, Parks JM, Skolnick J (2022) AF2Complex predicts direct physical interactions in multimeric proteins with deep learning. Nat Commun 13:1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C et al (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12:255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de Vries SJ, van Dijk M, Bonvin AM (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897

    Article  PubMed  Google Scholar 

  10. Pierce BG, Wiehe K, Hwang H, Kim BH, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30:1771–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Macindoe G, Mavridis L, Venkatraman V, Devignes MD, Ritchie DW (2010) HexServer: An FFT-based protein docking server powered by graphics processors. Nucleic Acids Res 38:W445–W449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Vries SJ, Schindler CE, Chauvot de Beauchene I, Zacharias M (2015) A web interface for easy flexible protein-protein docking with ATTRACT. Biophys J 108:462–465

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ogmen U, Keskin O, Aytuna AS, Nussinov R, Gursoy A (2005) PRISM: protein interactions by structural matching. Nucleic Acids Res 33:W331–W3W6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Torchala M, Moal IH, Chaleil RA, Fernandez-Recio J, Bates PA (2013) SwarmDock: a server for flexible protein-protein docking. Bioinformatics 29:807–809

    Article  CAS  PubMed  Google Scholar 

  15. Jimenez-Garcia B, Pons C, Fernandez-Recio J (2013) pyDockWEB: a web server for rigid-body protein-protein docking using electrostatics and desolvation scoring. Bioinformatics 29:1698–1699

    Article  CAS  PubMed  Google Scholar 

  16. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36:W233–W238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramirez-Aportela E, Lopez-Blanco JR, Chacon P (2016) FRODOCK 2.0: fast protein-protein docking server. Bioinformatics 32:2386–2388

    Article  CAS  PubMed  Google Scholar 

  19. Christoffer C, Bharadwaj V, Luu R, Kihara D (2021) LZerD protein-protein docking webserver enhanced with de novo structure prediction. Front Mol Biosci 8:724947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yan Y, Zhang D, Zhou P, Li B, Huang SY (2017) HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res 45:W365–WW73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quignot C, Postic G, Bret H, Rey J, Granger P, Murail S et al (2021) InterEvDock3: a combined template-based and free docking server with increased performance through explicit modeling of complex homologs and integration of covariation-based contact maps. Nucleic Acids Res 49:W277–WW84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34:W310–W314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vakser IA, Grudinin S, Jenkins NW, Kundrotas PJ, Deeds EJ (2022) Docking-based long timescale simulation of cell-size protein systems at atomic resolution. Proc Natl Acad Sci U S A 119:e2210249119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89:2195–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vakser IA (1995) Protein docking for low-resolution structures. Protein Eng 8:371–377

    Article  CAS  PubMed  Google Scholar 

  26. Lorenzen S, Zhang Y (2007) Identification of near-native structures by clustering protein docking conformations. Proteins 68:187–194

    Article  CAS  PubMed  Google Scholar 

  27. Lensink MF, Wodak SJ (2013) Docking, scoring, and affinity prediction in CAPRI. Proteins 81:2082–2095

    Article  CAS  PubMed  Google Scholar 

  28. Sinha R, Kundrotas PJ, Vakser IA (2010) Docking by structural similarity at protein-protein interfaces. Proteins 78:3235–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33:2302–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kundrotas PJ, Anishchenko I, Badal VD, Das M, Dauzhenka T, Vakser IA (2018) Modeling CAPRI targets 110-120 by template-based and free docking using contact potential and combined scoring function. Proteins 86(Suppl 1):302–310

    Article  CAS  PubMed  Google Scholar 

  31. Collins KW, Copeland MM, Kotthoff I, Singh A, Kundrotas PJ, Vakser IA (2022) DOCKGROUND resource for protein recognition studies. Protein Sci 31:e4481

    Article  PubMed  Google Scholar 

  32. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org

Download references

Acknowledgments

This study was supported by NIH grant R01GM074255 and NSF grant DBI1917263. The authors wish to acknowledge the contribution of Andrey Tovchigrechko who wrote the previous version of the server (GRAMM-X).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Petras J. Kundrotas or Ilya A. Vakser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Singh, A., Copeland, M.M., Kundrotas, P.J., Vakser, I.A. (2024). GRAMM Web Server for Protein Docking. In: Gore, M., Jagtap, U.B. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 2714. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3441-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3441-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3440-0

  • Online ISBN: 978-1-0716-3441-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics