Abstract
Identification and optimization of small molecules that bind to and modulate protein function is a crucial step in the early stages of drug development. For decades, this process has benefitted greatly from the use of computational models that can provide insights into molecular binding affinity and optimization. Over the past several years, various types of deep learning models have shown great potential in improving and enhancing the performance of traditional computational methods. In this chapter, we provide an overview of recent deep learning–based developments with applications in drug discovery. We classify these methods into four subcategories dependent on the task each method is aiming to solve. For each subcategory, we provide the general framework of the approach and discuss individual methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Venkatraman V, Chakravarthy PR, Kihara D (2009) Application of 3D Zernike descriptors to shape-based ligand similarity searching. J Cheminform 1:19. https://doi.org/10.1186/1758-2946-1-19
Sharma V, Wakode S, Kumar H (2021) Chapter 2 – structure- and ligand-based drug design: concepts, approaches, and challenges. In: Sharma N, Ojha H, Raghav PK, Goyal RK (eds) Chemoinformatics and bioinformatics in the pharmaceutical sciences. Academic Press, pp 27–53
Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476–488. https://doi.org/10.1002/minf.201000061
Wang D, Yu J, Chen L et al (2021) A hybrid framework for improving uncertainty quantification in deep learning-based QSAR regression modeling. J Cheminform 13:69. https://doi.org/10.1186/s13321-021-00551-x
Schaller D, Šribar D, Noonan T et al (2020) Next generation 3D pharmacophore modeling. WIREs Comput Mol Sci 10:e1468. https://doi.org/10.1002/wcms.1468
Shin W-H, Christoffer CW, Wang J, Kihara D (2016) PL-PatchSurfer2: improved local surface matching-based virtual screening method that is tolerant to target and ligand structure variation. J Chem Inf Model 56:1676–1691. https://doi.org/10.1021/acs.jcim.6b00163
Shin W-H, Kihara D (2019) Predicting binding poses and affinity ranking in D3R Grand Challenge using PL-PatchSurfer2.0. J Comput Aided Mol Des 33:1083–1094. https://doi.org/10.1007/s10822-019-00222-y
Halgren T (2007) New method for fast and accurate binding-site identification and analysis. Chem Biol Drug Des 69:146–148. https://doi.org/10.1111/j.1747-0285.2007.00483.x
Jiménez J, Doerr S, Martínez-Rosell G et al (2017) DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics 33:3036–3042. https://doi.org/10.1093/bioinformatics/btx350
Shin W-H, Kumazawa K, Imai K et al (2020) Current challenges and opportunities in designing protein-protein interaction targeted drugs. Adv Appl Bioinforma Chem 13:11–25. https://doi.org/10.2147/AABC.S235542
Shin W-H, Christoffer CW, Kihara D (2017) In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Methods 131:22–32. https://doi.org/10.1016/j.ymeth.2017.08.006
Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9:91–102. https://doi.org/10.1007/s12551-016-0247-1
Hoffer L, Muller C, Roche P, Morelli X (2018) Chemistry-driven hit-to-lead optimization guided by structure-based approaches. Mol Inform 37:1800059. https://doi.org/10.1002/minf.201800059
Bian Y, Xie X-Q (Sean) (2018) Computational fragment-based drug design: current trends, strategies, and applications. AAPS J 20:59. https://doi.org/10.1208/s12248-018-0216-7
Jones H, Rowland-Yeo K (2013) Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometrics Syst Pharmacol 2:e63. https://doi.org/10.1038/psp.2013.41
Anup N, Gadeval A, Rajpoot K, Tekade RK (2021) Chapter 24 – software used in ADME computation. In: Tekade RK (ed) Biopharmaceutics and pharmacokinetics considerations. Academic Press, pp 699–708
Jarada TN, Rokne JG, Alhajj R (2020) A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions. J Cheminform 12:46. https://doi.org/10.1186/s13321-020-00450-7
Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform 1:8. https://doi.org/10.1186/1758-2946-1-8
Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36. https://doi.org/10.1021/ci00057a005
Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334
Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196. https://doi.org/10.1021/jm051256o
Guedes IA, Pereira FSS, Dardenne LE (2018) Empirical scoring functions for structure-based virtual screening: applications, critical aspects, and challenges. Front Pharmacol 9:1089
Li H, Leung K-S, Wong M-H, Ballester PJ (2015) Improving AutoDock Vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets. Mol Inform 34:115–126. https://doi.org/10.1002/minf.201400132
Su M, Yang Q, Du Y et al (2019) Comparative assessment of scoring functions: the CASF-2016 update. J Chem Inf Model 59:895–913. https://doi.org/10.1021/acs.jcim.8b00545
Brown BP, Mendenhall J, Geanes AR, Meiler J (2021) General purpose structure-based drug discovery neural network score functions with human-interpretable pharmacophore maps. J Chem Inf Model 61:603–620. https://doi.org/10.1021/acs.jcim.0c01001
Ashtawy HM, Mahapatra NR (2015) BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes. BMC Bioinformatics 16:S8. https://doi.org/10.1186/1471-2105-16-S4-S8
Zheng L, Fan J, Mu Y (2019) OnionNet: a multiple-layer intermolecular-contact-based convolutional neural network for protein–ligand binding affinity prediction. ACS Omega 4:15956–15965. https://doi.org/10.1021/acsomega.9b01997
Stepniewska-Dziubinska MM, Zielenkiewicz P, Siedlecki P (2018) Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. Bioinformatics 34:3666–3674. https://doi.org/10.1093/bioinformatics/bty374
Moon S, Zhung W, Yang S et al (2022) PIGNet: a physics-informed deep learning model toward generalized drug–target interaction predictions. Chem Sci 13:3661–3673. https://doi.org/10.1039/D1SC06946B
Méndez-Lucio O, Ahmad M, del Rio-Chanona EA, Wegner JK (2021) A geometric deep learning approach to predict binding conformations of bioactive molecules. Nat Mach Intell 3:1033–1039. https://doi.org/10.1038/s42256-021-00409-9
Liu Z, Li Y, Han L et al (2015) PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 31:405–412. https://doi.org/10.1093/bioinformatics/btu626
Jiang H, Wang J, Cong W et al (2022) Predicting protein–ligand docking structure with graph neural network. J Chem Inf Model 62(12):2923–2932
Wang J, Dokholyan NV (2019) MedusaDock 2.0: efficient and accurate protein–ligand docking with constraints. J Chem Inf Model 59:2509–2515. https://doi.org/10.1021/acs.jcim.8b00905
Corso G, Stärk H, Jing B, Barzilay R, Jaakkola T (2022) DiffDock: diffusion steps, twists, and turns for molecular docking. arXiv:2210.01776v2 [q-bio.BM]. https://doi.org/10.48550/arXiv.2210.01776
Ho J, Jain A, Abbeel P (2020) Denoising diffusion probabilistic models. arXiv:2006.11239v2 [cs.LG]. https://doi.org/10.48550/arXiv.2006.11239
Radford A, Kim JW, Hallacy C, et al (2021) Learning transferable visual models from natural language supervision. arXiv:2103.00020v1 [cs.CV]. https://doi.org/10.48550/arXiv.2103.00020
Ramesh A, Pavlov M, Goh G, et al (2021) Zero-shot text-to-image generation. In: Proceedings of the 38th international conference on machine learning PMLR, vol 139, pp 8821–8831
Ramesh A, Dhariwal P, Nichol A Chu C, Chen M (2022) Hierarchical text-conditional image generation with CLIP latents. arXiv:2204.06125v1 [cs.CV]. https://doi.org/10.48550/arXiv.2204.06125
Yang L, Zhang Z, Song Y, et al (2022) Diffusion models: a comprehensive survey of methods and applications. arXiv:2209.00796v10 [cs.LG]. https://doi.org/10.48550/arXiv.2209.00796
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
Zhang Z, Li F, Guan J et al (2022) GANs for molecule generation in drug design and discovery. In: Razavi-Far R, Ruiz-Garcia A, Palade V, Schmidhuber J (eds) Generative adversarial learning: architectures and applications. Springer International Publishing, Cham, pp 233–273
Maziarka Ł, Pocha A, Kaczmarczyk J et al (2020) Mol-CycleGAN: a generative model for molecular optimization. J Cheminform 12:2. https://doi.org/10.1186/s13321-019-0404-1
Zhou Z, Kearnes S, Li L et al (2019) Optimization of molecules via deep reinforcement learning. Sci Rep 9:10752. https://doi.org/10.1038/s41598-019-47148-x
Bickerton GR, Paolini GV, Besnard J et al (2012) Quantifying the chemical beauty of drugs. Nat Chem 4:90–98. https://doi.org/10.1038/nchem.1243
Green H, Koes DR, Durrant JD (2021) DeepFrag: a deep convolutional neural network for fragment-based lead optimization. Chem Sci 12:8036–8047. https://doi.org/10.1039/D1SC00163A
Green H, Durrant JD (2021) DeepFrag: an open-source browser app for deep-learning lead optimization. J Chem Inf Model 61:2523–2529. https://doi.org/10.1021/acs.jcim.1c00103
Hu L, Benson ML, Smith RD et al (2005) Binding MOAD (Mother Of All Databases). Proteins Struct Funct Bioinform 60:333–340. https://doi.org/10.1002/prot.20512
Imrie F, Bradley AR, van der Schaar M, Deane CM (2020) Deep generative models for 3D linker design. J Chem Inf Model 60:1983–1995. https://doi.org/10.1021/acs.jcim.9b01120
Yang Y, Zheng S, Su S et al (2020) SyntaLinker: automatic fragment linking with deep conditional transformer neural networks. Chem Sci 11:8312–8322. https://doi.org/10.1039/D0SC03126G
Shi W, Singha M, Srivastava G et al (2022) Pocket2Drug: an encoder-decoder deep neural network for the target-based drug design. Front Pharmacol 13:837715
Krenn M, Häse F, Nigam A et al (2020) Self-referencing embedded strings (SELFIES): a 100% robust molecular string representation. Mach Learn Sci Technol 1:045024. https://doi.org/10.1088/2632-2153/aba947
Krishnan SR, Bung N, Vangala SR et al (2022) De novo structure-based drug design using deep learning. J Chem Inf Model 62:5100–5109. https://doi.org/10.1021/acs.jcim.1c01319
Acknowledgments
This work was partly supported by the National Institutes of Health (R01GM133840, 3R01 GM133840-02S1) and the National Science Foundation (DMS2151678, DBI2003635, DBI2146026, CMMI1825941, IIS2211598, and MCB1925643). JV is supported by an NIGMS-funded predoctoral fellowship (T32 GM132024).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Verburgt, J., Jain, A., Kihara, D. (2024). Recent Deep Learning Applications to Structure-Based Drug Design. In: Gore, M., Jagtap, U.B. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 2714. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3441-7_13
Download citation
DOI: https://doi.org/10.1007/978-1-0716-3441-7_13
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-3440-0
Online ISBN: 978-1-0716-3441-7
eBook Packages: Springer Protocols