Skip to main content

Flow Cytometric Analysis of Regulated Cell Death

  • Protocol
  • First Online:
Ferroptosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2712))

  • 927 Accesses

Abstract

Cell death is a crucial and fundamental process in the biology of all living organisms and plays an essential role in developmental, cellular, and molecular biology. With a deeper understanding of the mechanisms of different types of cell death, quantitative experiments are becoming increasingly necessary to analyze the dynamic changes and coordinate physiological processes. Flow cytometry is the most widely used method for detecting and quantifying cell processes in mammalian cells, providing a comprehensive and high-throughput approach, even at the single-cell level. This chapter provides a brief overview of guidelines for performing flow cytometry in the detection of regulated cell deaths, including apoptosis, autophagy, ferroptosis, pyroptosis, and immunogenic cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tang D, Kang R, Berghe TV et al (2019) The molecular machinery of regulated cell death. Cell Res 29:347–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S et al (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy:1–382

    Google Scholar 

  4. McKinnon KM (2018) Flow cytometry: an overview. Curr Protoc Immunol 120:5.1–5.1.11

    Google Scholar 

  5. Jahan-Tigh RR, Ryan C, Obermoser G et al (2012) Flow cytometry. J Invest Dermatol 132:1–6

    Article  PubMed  Google Scholar 

  6. Manohar SM, Shah P, Nair A (2021) Flow cytometry: principles, applications and recent advances. Bioanalysis 13:181–198

    Article  PubMed  Google Scholar 

  7. Maciorowski Z, Chattopadhyay PK, Jain P (2017) Basic multicolor flow cytometry. Curr Protoc Immunol 117:5.4.1–5.4.38

    Article  PubMed  Google Scholar 

  8. Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol 18:1106–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Del Re DP, Amgalan D, Linkermann A et al (2019) Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev 99:1765–1817

    Article  PubMed  PubMed Central  Google Scholar 

  10. Su LJ, Zhang JH, Gomez H et al (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Med Cell Longev 2019:5080843

    Article  Google Scholar 

  11. De Duve C, Wattiaux R (1966) Functions of lysosomes. Annu Rev Physiol 28:435–492

    Article  PubMed  Google Scholar 

  12. Mortimore GE, Schworer CM (1977) Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature 270:174–176

    Article  CAS  PubMed  Google Scholar 

  13. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  14. Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176:11–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364

    Article  CAS  PubMed  Google Scholar 

  16. Thome MP, Filippi-Chiela EC, Villodre ES et al (2016) Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy. J Cell Sci 129:4622–4632

    CAS  PubMed  Google Scholar 

  17. Tang D, Kroemer G (2020) Ferroptosis. Curr Biol 30:R1–R6

    Article  Google Scholar 

  18. Stockwell BR, Friedmann Angeli JP, Bayir H et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen X, Li J, Kang R et al (2021) Ferroptosis: machinery and regulation. Autophagy 17:2054–2081

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Kang R, Tang D (2021) Signaling pathways and defense mechanisms of ferroptosis. FEBS J, vol 289, p 7038

    Google Scholar 

  21. Hou W, Xie Y, Song X et al (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12:1425–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li J, Liu J, Xu Y et al (2021) Tumor heterogeneity in autophagy-dependent ferroptosis. Autophagy 17:3361–3374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen X, Song X, Li J et al (2022) Identification of HPCAL1 as a specific autophagy receptor involved in ferroptosis. Autophagy:1–21

    Google Scholar 

  24. Chen X, Kang R, Kroemer G et al (2021) Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 18:280–296

    Article  CAS  PubMed  Google Scholar 

  25. Chen X, Comish PB, Tang D et al (2021) Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol 9:637162

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu P, Zhang X, Liu N et al (2021) Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 6:128

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42:245–254

    Article  CAS  PubMed  Google Scholar 

  28. Kang R, Zeng L, Zhu S et al (2018) Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe 24:97–108. e4, 97

    Article  Google Scholar 

  29. Zhang H, Zeng L, Xie M et al (2020) TMEM173 Drives Lethal Coagulation in Sepsis. Cell Host Microbe 27:556–570.e6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tang D, Wang H, Billiar TR et al (2021) Emerging mechanisms of immunocoagulation in sepsis and septic shock. Trends Immunol 42:508–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kovacs SB, Miao EA (2017) Gasdermins: effectors of pyroptosis. Trends Cell Biol 27:673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shi J, Zhao Y, Wang K et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665

    Article  CAS  PubMed  Google Scholar 

  33. Galluzzi L, Buque A, Kepp O et al (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17:97–111

    Article  CAS  PubMed  Google Scholar 

  34. Galluzzi L, Vitale I, Warren S et al (2020) Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer 8

    Google Scholar 

  35. Fucikova J, Kepp O, Kasikova L et al (2020) Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis 11:1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fucikova J, Spisek R, Kroemer G et al (2021) Calreticulin and cancer. Cell Res 31:5–16

    Article  CAS  PubMed  Google Scholar 

  37. Li W, Yang J, Luo L et al (2019) Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat Commun 10:3349

    Article  PubMed  PubMed Central  Google Scholar 

  38. Obeid M, Panaretakis T, Tesniere A et al (2007) Leveraging the immune system during chemotherapy: moving calreticulin to the cell surface converts apoptotic death from “silent” to immunogenic. Cancer Res 67:7941–7944

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huang, S., Zeng, L. (2023). Flow Cytometric Analysis of Regulated Cell Death. In: Kroemer, G., Tang, D. (eds) Ferroptosis. Methods in Molecular Biology, vol 2712. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3433-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3433-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3432-5

  • Online ISBN: 978-1-0716-3433-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics