Skip to main content

Annotation of the Effect of Chemogenomic Compounds on Cell Health Using High-Content Microscopy in Live-Cell Mode

  • Protocol
  • First Online:
Chemogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2706))

Abstract

The characterization of chemogenomic libraries with respect to their general effect on cellular health represents essential data for the annotation of phenotypic responses. Here, we describe a multidimensional high-content live cell assay that allows to examine cell viability in different cell lines, based on their nuclear morphology as well as modulation of small molecules of tubulin structure, mitochondrial health, and membrane integrity. The protocol monitors cells during a time course of 48 h using osteosarcoma cells, human embryonic kidney cells, and untransformed human fibroblasts as an example. The described protocol can be easily established and it can be adapted to other cell lines or other parameters important for cellular health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bredel M, Jacoby E (2004) Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat Rev Genet 5(4):262–275

    Article  CAS  PubMed  Google Scholar 

  2. Caron PR et al (2001) Chemogenomic approaches to drug discovery. Curr Opin Chem Biol 5(4):464–470

    Article  CAS  PubMed  Google Scholar 

  3. Wells CI et al (2021) The kinase Chemogenomic set (KCGS): an Open Science resource for kinase vulnerability identification. Int J Mol Sci 22(2):566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gerry CJ et al (2016) Real-time biological annotation of synthetic compounds. J Am Chem Soc 138(28):8920–8927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hafner M et al (2016) Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat Methods 13(6):521–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tjaden A et al (2022) Image-based annotation of chemogenomic libraries for phenotypic screening. Molecules 27(4):1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boyd J, Fennell M, Carpenter A (2020) Harnessing the power of microscopy images to accelerate drug discovery: what are the possibilities? Expert Opin Drug Discovery 15(6):639–642

    Article  Google Scholar 

  8. Ziegler S, Sievers S, Waldmann H (2021) Morphological profiling of small molecules. Cell Chem Bio 28(3):300–319

    Article  CAS  Google Scholar 

  9. Hughes P et al (2007) The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? BioTechniques 43(5):575–586

    Article  CAS  PubMed  Google Scholar 

  10. Kozikowski BA et al (2003) The effect of room-temperature storage on the stability of compounds in DMSO. J Biomol Screen 8(2):205–209

    Article  CAS  PubMed  Google Scholar 

  11. Bruno S et al (1992) Different effects of staurosporine, an inhibitor of protein kinases, on the cell cycle and chromatin structure of normal and leukemic lymphocytes. Cancer Res 52(2):470–473

    CAS  PubMed  Google Scholar 

  12. Wang TH, Wang HS, Soong YK (2000) Paclitaxel-induced cell death: where the cell cycle and apoptosis come together. Cancer 88(11):2619–2628

    Article  CAS  PubMed  Google Scholar 

  13. Sanchez-Martinez C et al (2015) Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg Med Chem Lett 25(17):3420–3435

    Article  CAS  PubMed  Google Scholar 

  14. Al-Aamri HM et al (2019) Time dependent response of daunorubicin on cytotoxicity, cell cycle and DNA repair in acute lymphoblastic leukaemia. BMC Cancer 19(1):179

    Article  PubMed  PubMed Central  Google Scholar 

  15. Styrt B, Johnson PC, Klempner MS (1985) Differential lysis of plasma membranes and granules of human neutrophils by digitonin. Tissue Cell 17(6):793–800

    Article  CAS  PubMed  Google Scholar 

  16. Fokas E et al (2012) Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis 3(12):e441–e441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tjaden A et al (2022) High-content live-cell multiplex screen for chemogenomic compound annotation based on nuclear morphology. STAR Protocols 3(4):101791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors are grateful for support by the Structural Genomics Consortium (SGC), a registered charity (No: 1097737) that receives funds from Bayer AG, Boehringer Ingelheim, Bristol Myers Squibb, Genentech, Genome Canada through Ontario Genomics Institute, Janssen, Merck KGaA, Pfizer, and Takeda and by the German Cancer Research Center DKTK and the Frankfurt Cancer Institute (FCI). This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No 875510. The JU receives support from the European Union’s Horizon 2020 research and innovation program and EFPIA and Ontario Institute for Cancer Research, Royal Institution for the Advancement of Learning McGill University, Kungliga Tekniska Hoegskolan, Diamond Light Source Limited. Disclaimer: This communication reflects the views of the authors, and the JU is not liable for any use that may be made of the information contained herein. A.T. is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – grant number 259130777 (SFB1177). The CQ1 microscope was funded by FUGG (INST 161/920-1 FUGG). We thank Robert Giessmann for his help optimizing the assay and Martin Schroeder for the inspiration to perform the assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tjaden, A., Knapp, S., Müller, S. (2023). Annotation of the Effect of Chemogenomic Compounds on Cell Health Using High-Content Microscopy in Live-Cell Mode. In: Merk, D., Chaikuad, A. (eds) Chemogenomics. Methods in Molecular Biology, vol 2706. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3397-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3397-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3396-0

  • Online ISBN: 978-1-0716-3397-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics