Skip to main content

Live-Cell High-Throughput Screen for Monitoring Autophagy Flux

  • Protocol
  • First Online:
Chemogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2706))

Abstract

Autophagy is a cellular process implicated in the renewal of cellular components and the maintenance of cellular hemostasis and therefore associated with various types of diseases. In addition, autophagy belongs to the stress response pathways and is frequently activated by chemical compounds harboring characteristics of cell toxicity. High-throughput screens analyzing autophagy flux are therefore applied in both, the field of compound identification for targeting autophagy and compound characterization for analyzing compound toxicity. In this chapter, we describe a live-cell, fluorescent-based, high-throughput screening method in 384-well format for the fast and accurate measurement of autophagy flux over time suitable for academic research, pharmacological applications, and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176:11–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364

    Article  CAS  PubMed  Google Scholar 

  3. Klionsky DJ et al (2021) Autophagy in major human diseases. EMBO J 40:e108863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deretic V, Kroemer G (2022) Autophagy in metabolism and quality control: opposing, complementary or interlinked functions? Autophagy 18:283–292

    Article  CAS  PubMed  Google Scholar 

  5. Mizushima N, Murphy LO (2020) Autophagy assays for biological discovery and therapeutic development. Trends Biochem Sci 45:1080–1093

    Article  CAS  PubMed  Google Scholar 

  6. Ueno T, Komatsu M (2020) Monitoring autophagy flux and activity: principles and applications. BioEssays 42:e2000122

    Article  PubMed  Google Scholar 

  7. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaizuka T et al (2016) An autophagic flux probe that releases an internal control. Mol Cell 64:835–849

    Article  CAS  PubMed  Google Scholar 

  9. Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3:452–460

    Article  CAS  PubMed  Google Scholar 

  10. Pankiv S et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  PubMed  Google Scholar 

  11. Khaminets A et al (2015) Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522:354–358

    Article  CAS  PubMed  Google Scholar 

  12. Liang JR, Lingeman E, Ahmed S, Corn JE (2018) Atlastins remodel the endoplasmic reticulum for selective autophagy. J Cell Biol 217:3354–3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liang JR et al (2020) A genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-resident UFMylation. Cell 180:1160–1177.e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. An H et al (2019) TEX264 is an endoplasmic reticulum-resident ATG8-interacting protein critical for ER remodeling during nutrient stress. Mol Cell 74:891–908.e10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chino H, Hatta T, Natsume T, Mizushima N (2019) Intrinsically disordered protein TEX264 mediates ER-phagy. Mol Cell 74:909–921.e6

    Article  CAS  PubMed  Google Scholar 

  16. Reggio A et al (2021) Role of FAM134 paralogues in endoplasmic reticulum remodeling, ER-phagy, and collagen quality control. EMBO Rep 22:1–20

    Article  Google Scholar 

  17. Chen Q et al (2019) ATL3 is a tubular ER-Phagy receptor for GABARAP-mediated selective autophagy. Curr Biol 29:846–855.e6

    Article  CAS  PubMed  Google Scholar 

  18. Katayama H, Kogure T, Mizushima N, Yoshimori T, Miyawaki A (2011) A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 18:1042–1052

    Article  CAS  PubMed  Google Scholar 

  19. Katayama H et al (2020) Visualizing and modulating mitophagy for therapeutic studies of neurodegeneration. Cell 181:1176–1187.e16

    Article  CAS  PubMed  Google Scholar 

  20. Allen GFG, Toth R, James J, Ganley IG (2013) Loss of iron triggers PINK1/parkin-independent mitophagy. EMBO Rep 14:1127–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McWilliams TG et al (2016) Mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J Cell Biol 214:333–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eapen VV, Swarup S, Hoyer MJ, Paulo JA, Harper JW (2021) Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy. elife 10

    Google Scholar 

  23. Diehl V et al (2021) Minimized combinatorial CRISPR screens identify genetic interactions in autophagy. Nucleic Acids Res 49:5684–5704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wells CI et al (2021) The Kinase Chemogenomic Set (KCGS): an open science resource for kinase vulnerability identification. Int J Mol Sci 22

    Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation DFG (SFB1177/2 and WO210/20-2), the Dr. Rolf M. Schwiete Stiftung (13/2017), the Hessian Ministry of Science and Art (HMWK) initiative ENABLE, and the EU/EFPIA/OICR/McGill/KTH/Diamond Innovative Medicines Initiative 2 Joint Undertaking (EUbOPEN Grant No. 875510).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Stolz .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cano-Franco, S., Ho-Xuan, H., Brunello, L., Stolz, A. (2023). Live-Cell High-Throughput Screen for Monitoring Autophagy Flux. In: Merk, D., Chaikuad, A. (eds) Chemogenomics. Methods in Molecular Biology, vol 2706. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3397-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3397-7_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3396-0

  • Online ISBN: 978-1-0716-3397-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics