Skip to main content

HiBiT Cellular Thermal Shift Assay (HiBiT CETSA)

  • Protocol
  • First Online:
Chemogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2706))

Abstract

Cellular thermal shift assay (CETSA) is based on the thermal stabilization of the protein target by a compound binding. Thus, CETSA can be used to measure a compound’s cellular target engagement and permeability. HiBiT CETSA method is quantitative and has higher throughput compared to the traditional Western-based CETSA. Here, we describe the protocol for a HiBiT CETSA, which utilizes a HiBiT tag derived from the NanoLuciferase (NanoLuc) that upon complementation by LgBiT NanoLuc tag produces a bright signal enabling tracking of the effects of increasing temperature on the stability of a protein-of-interest in the presence/absence of various compounds. Exposure of a HiBiT-tagged protein to increasing temperatures induces protein denaturation and thus decreased LgBiT complementation and NanoLuc signal. As the stability of proteins at higher temperatures can be influenced by the compound binding, this method enables screening for target engagement in living or permeabilized cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Simon GM, Niphakis MJ, Cravatt BF (2013) Determining target engagement in living systems. Nat Chem Biol 9:200–205. https://doi.org/10.1038/NCHEMBIO.1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Molina DM, Jafari R, Ignatushchenko M et al (2013) Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341:84–87. https://doi.org/10.1126/SCIENCE.1233606

    Article  CAS  Google Scholar 

  3. Jafari R, Almqvist H, Axelsson H et al (2014) The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc 9:2100–2122. https://doi.org/10.1038/NPROT.2014.138

    Article  CAS  PubMed  Google Scholar 

  4. Hall MP, Unch J, Binkowski BF et al (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7:1848–1857. https://doi.org/10.1021/CB3002478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dart ML, Machleidt T, Jost E et al (2018) Homogeneous assay for target engagement utilizing bioluminescent thermal shift. ACS Med Chem Lett 9:546–551. https://doi.org/10.1021/ACSMEDCHEMLETT.8B00081/SUPPL_FILE/ML8B00081_SI_001.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sanchez TW, Owens A, Martinez NJ et al (2021) High-throughput detection of ligand-protein binding using a SplitLuc cellular thermal shift assay. Methods Mol Biol 2365:21–41. https://doi.org/10.1007/978-1-0716-1665-9_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martinez NJ, Asawa RR, Cyr MG et al (2018) A widely-applicable high-throughput cellular thermal shift assay (CETSA) using split Nano luciferase. Sci Reports 81(8):1–16. https://doi.org/10.1038/s41598-018-27834-y

    Article  CAS  Google Scholar 

  8. Mortison JD, Cornella-Taracido I, Venkatchalam G et al (2021) Rapid evaluation of small molecule cellular target engagement with a luminescent thermal shift assay. ACS Med Chem Lett 12:1288–1294. https://doi.org/10.1021/ACSMEDCHEMLETT.1C00276/SUPPL_FILE/ML1C00276_SI_003.XLSX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ramachandran S, Makukhin N, Haubrich K, et al (2022) Structure-based design of a phosphotyrosine-masked covalent ligand targeting the E3 ligase SOCS2. https://doi.org/10.26434/CHEMRXIV-2022-BVJ80

  10. Larson HG, Zakharov AV, Sarkar S et al (2021) A genome-edited ERα-HiBiT fusion reporter cell line for the identification of ERα modulators via high-throughput screening and CETSA. Assay Drug Dev Technol 19:539–549. https://doi.org/10.1089/ADT.2021.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vasta JD, Corona CR, Robers MB (2021) A high-throughput method to prioritize PROTAC intracellular target engagement and cell permeability using NanoBRET. Methods Mol Biol 2365:265–282. https://doi.org/10.1007/978-1-0716-1665-9_14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council of Canada through a postdoctoral fellowship to V.V. and grant to D.B.L, and by the Structural Genomics Consortium, a registered charity (no: 1097737) that receives funds from Bayer AG, Boehringer Ingelheim, Bristol Myers Squibb, Genentech, Genome Canada through Ontario Genomics Institute [OGI-196], EU/EFPIA/ OICR/McGill/KTH/Diamond Innovative Medicines Initiative 2 Joint Undertaking [EUbOPEN grant 875510], Janssen, Merck KGaA (aka EMD in Canada and US), Pfizer, and Takeda. This project has also received funding from the Innovative Medicines Initiative 2 (IMI2) Joint Undertaking (JU) under grant agreement No 875510. The JU receives support from the European Union’s Horizon 2020 research and innovation program and EFPIA and Ontario Institute for Cancer Research, Royal Institution for the Advancement of Learning McGill University, Kungliga Tekniska Hoegskolan, Diamond Light Source Limited. S.R. is specifically funded by the IMI2 EUbOPEN project. S.H.B was supported by Mitacs Elevate Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Vu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ramachandran, S., Szewczyk, M., Barghout, S.H., Ciulli, A., Barsyte-Lovejoy, D., Vu, V. (2023). HiBiT Cellular Thermal Shift Assay (HiBiT CETSA). In: Merk, D., Chaikuad, A. (eds) Chemogenomics. Methods in Molecular Biology, vol 2706. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3397-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3397-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3396-0

  • Online ISBN: 978-1-0716-3397-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics