Skip to main content

Correlated Single-Molecule Magnetic Tweezers and Fluorescence Measurements of DNA-Enzyme Interactions

  • Protocol
  • First Online:
Single Molecule Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2694))

Abstract

Combining force spectroscopy and fluorescence microscopy provides a substantial improvement to the single-molecule toolbox by allowing simultaneous manipulation and orthogonal characterizations of the conformations, interactions, and activity of biomolecular complexes. Here, we describe a combined magnetic tweezers and total internal reflection fluorescence microscopy setup to carry out correlated single-molecule fluorescence spectroscopy and force/twisting experiments. We apply the setup to reveal the DNA interactions of the CRISPR-Cas surveillance complex Cascade. Single-molecule fluorescence of a labeled Cascade allows to follow the DNA association and dissociation of the protein. Simultaneously, the magnetic tweezers probe the DNA unwinding during R-loop formation by the bound Cascade complexes. Furthermore, the setup supports observation of 1D diffusion of protein complexes on stretched DNA molecules. This technique can be applied to study a vast range of protein-DNA interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kemmerich FE, Daldrop P, Pinto C, Levikova M, Cejka P, Seidel R (2016) Force regulated dynamics of RPA on a DNA fork. Nucleic Acids Res 44:5837–5848

    Article  Google Scholar 

  2. Kemmerich FE, Kasaciunaite K, Seidel R (2016) Modular magnetic tweezers for single-molecule characterizations of helicases. Methods 108:4–13

    Article  Google Scholar 

  3. Kasaciunaite K, Fettes F, Levikova M, Daldrop P, Anand R, Cejka P, Seidel R (2019) Competing interaction partners modulate the activity of Sgs1 helicase during DNA end resection. EMBO J 38:e101516

    Article  Google Scholar 

  4. Gutierrez-Escribano P, Hormeño S, Madariaga-Marcos J, Solé-Soler R, O’Reilly FJ, Morris K, Aicart-Ramos C, Aramayo R, Montoya A, Kramer H, Rappsilber J, Torres-Rosell J, Moreno-Herrero F, Aragon L (2020) Purified Smc5/6 complex exhibits DNA substrate recognition and compaction. Mol Cell 80:1039–1054.e6

    Article  Google Scholar 

  5. Deniz AA, Mukhopadhyay S, Lemke EA (2008) Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface 5:15–45

    Article  Google Scholar 

  6. O’Callahan B, Qafoku O, Balema V, Negrete OA, Passian A, Engelhard MH, Waters KM (2021) Atomic force microscopy and infrared nanospectroscopy of COVID-19 spike protein for the quantification of adhesion to common surfaces. Langmuir 37:12089–12097

    Article  Google Scholar 

  7. Schakenraad K, Biebricher AS, Sebregts M, Ten Bensel B, Peterman EJG, Wuite GJL, Heller I, Storm C, van der Schoot P (2017) Hyperstretching DNA. Nat Commun 8:2197

    Article  ADS  Google Scholar 

  8. Bugiel M, Schäffer E (2018) Three-dimensional optical tweezers tracking resolves random sideward steps of the Kinesin-8 Kip3. Biophys J 115:1993–2002

    Article  Google Scholar 

  9. Flors C (2013) Super-resolution fluorescence imaging of directly labelled DNA: from microscopy standards to living cells. J Microsc 251:1–4

    Article  ADS  Google Scholar 

  10. von Diezmann L, Shechtman Y, Moerner WE (2017) Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chem Rev 117:7244–7275

    Article  Google Scholar 

  11. Visnapuu ML, Greene EC (2009) Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition. Nat Struc Mol Biol 16:1056–1062

    Article  Google Scholar 

  12. Kilic S, Felekyan S, Doroshenko O, Boichenko I, Dimura M, Vardanyan H, Bryan LC, Arya G, Seidel CAM, Fierz B (2018) Single-molecule FRET reveals multiscale chromatin dynamics modulated by HP1α. Nat Commun 9:235

    Article  ADS  Google Scholar 

  13. Chacko JV, Harke B, Canale C, Diaspro A (2014) Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging. J Biomed Opt 19:105003

    Article  Google Scholar 

  14. Pippig DA, Baumann F, Strackharn M, Aschenbrenner D, Gaub HE (2014) Protein-DNA chimeras for nano assembly. ACS Nano 8:6551–6555

    Article  Google Scholar 

  15. Ganim Z, Rief M (2017) Mechanically switching single-molecule fluorescence of GFP by unfolding and refolding. Proc Natl Acad Sci USA 114:11052–11056

    Article  ADS  Google Scholar 

  16. Heller I, Sitters G, Broekmans OD, Farge G, Menges C, Wende W, Hell SW, Peterman EJG, Wuite GJL (2013) STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nat Methods 10:910–916

    Article  Google Scholar 

  17. Madariaga-Marcos J, Hormeño S, Pastrana CL, Fisher GL, Dillingham MS, Moreno-Herrero F (2018) Force determination in lateral magnetic tweezers combined with TIRF microscopy. Nanoscale 10(9):4579–4590

    Article  Google Scholar 

  18. Cross SJ, Brown CE, Baumann CG (2016) Transverse magnetic tweezers allowing coincident epifluorescence microscopy on horizontally extended DNA. Methods Mol Biol 1431:73–90

    Article  Google Scholar 

  19. Schwarz FW, Tóth J, van Aelst K, Cui G, Clausing S, Szczelkun MD, Seidel R (2013) The helicase-like domains of type III restriction enzymes trigger long-range diffusion along DNA. Science 340:353–356

    Article  ADS  Google Scholar 

  20. van Loenhout MTJ, de Grunt MV, Dekker C (2012) Dynamics of DNA supercoils. Science 338:94–97

    Article  ADS  Google Scholar 

  21. Oliver PM, Park JS, Vezenov D (2011) Quantitative high-resolution sensing of DNA hybridization using magnetic tweezers with evanescent illumination. Nanoscale 3:581–591

    Article  ADS  Google Scholar 

  22. Seol Y, Neuman KC (2018) Combined magnetic tweezers and micro-mirror total internal reflection fluorescence microscope for single-molecule manipulation and visualization. Methods Mol Biol 1665:297–316

    Article  Google Scholar 

  23. Guo Q, He Y, Lu HP (2015) Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy. Proc Natl Acad Sci USA 112:13904–13909

    Article  ADS  Google Scholar 

  24. Lebel P, Basu A, Oberstrass FC, Tretter EM, Bryant Z (2014) Gold rotor bead tracking for high-speed measurements of DNA twist, torque and extension. Nat Methods 11:456–462

    Article  Google Scholar 

  25. Strick TR, Allemand JF, Bensimon D, Bensimon A, Croquette V (1996) The elasticity of a single supercoiled DNA molecule. Science 271:1835–1837

    Article  ADS  MATH  Google Scholar 

  26. Smith SB, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258:1122–1126

    Article  ADS  Google Scholar 

  27. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709

    Article  ADS  Google Scholar 

  28. Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891):960

    Article  ADS  Google Scholar 

  29. Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71

    Article  ADS  Google Scholar 

  30. Sinkunas T, Gasiunas G, Waghmare SP, Dickman MJ, Barrangou R, Horvath P, Siksnys V (2013) In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J 32:385–394

    Article  Google Scholar 

  31. Redding S, Sternberg SH, Marshall M, Gibb B, Bhat P, Guegler CK, Wiedenheft B, Doudna JA, Greene EC (2015) Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system. Cell 163:854–865

    Article  Google Scholar 

  32. Wiedenheft B, Lander GC, Zhou K, Jore MM, Brouns SJJ, van der Oost J, Doudna JA, Nogales E (2011) Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477:486–489

    Article  ADS  Google Scholar 

  33. Westra ER, van Erp PBG, Künne T, Wong SP, Staals RHJ, Seegers CLC, Bollen S, Jore MM, Semenova E, Severinov K, de Vos WM, Dame RT, de Vries R, Brouns SJJ, van der Oost J (2012) CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell 46:595–605

    Article  Google Scholar 

  34. Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190:1390–1400

    Article  Google Scholar 

  35. Mojica FJM, DíezVillaseñor C, García-Martínez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–740

    Article  Google Scholar 

  36. Csörgó B, León LM, Chau-Ly IJ, Vasquez-Rifo A, Berry JD, Mahendra C, Crawford ED, Lewis JD, Bondy-Denomy J (2020) A compact Cascade-Cas3 system for targeted genome engineering. Nat Methods 17:1183–1190

    Article  Google Scholar 

  37. Cameron P, Coons MM, Klompe SE, Lied AM, Smith SC, Vidal B, Donohoue PD, Rotstein T, Kohrs BW, Nyer DB, Kennedy R, Banh LM, Williams C, Toh MS, Irby MJ, Edwards LS, Lin CH, Owen ALG, Künne T, van der Oost J, Brouns SJJ, Slorach EM, Fuller CK, Gradia S, Kanner SB, May AP, Sternberg SH (2019) Harnessing type I CRISPR-Cas systems for genome engineering in human cells. Nat Biotechnol 37:1471–1477

    Article  Google Scholar 

  38. Young JK, Gasior SL, Jones S, Wang L, Navarro P, Vickroy B, Barrangou R (2019) The repurposing of type I-E CRISPR-Cascade for gene activation in plants. Commun Biol 2:383

    Article  Google Scholar 

  39. Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul U, Wurm R, Wagner R, Beijer MR, Barendregt A, Zhou K, Snijders APL, Dickman MJ, Doudna JA, Boekema EJ, Heck AJR, van der Oost J, Brouns SJJ (2011) Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struc Mol Biol 18:529–536

    Article  Google Scholar 

  40. Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, Pschera P, Siksnys V, Seidel R (2014) Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Pro Natl Acad Sci USA 111:9798–9803

    Article  ADS  Google Scholar 

  41. Rutkauskas M, Sinkunas T, Songailiene I, Tikhomirova MS, Siksnys V, Seidel R (2015) Directional R-loop formation by the CRISPR-Cas surveillance complex cascade provides efficient off-target site rejection. Cell Rep 10:1534–1543

    Article  Google Scholar 

  42. Rutkauskas M, Krivoy A, Szczelkun MD, Rouillon C, Seidel R (2017) Single-molecule insight into target recognition by CRISPR-Cas complexes. Meth Enzymol 582:239–273

    Article  Google Scholar 

  43. Aldag P, Welzel F, Jakob L, Schmidbauer A, Rutkauskas M, Fettes F, Grohmann D, Seidel R (2021) Probing the stability of the SpCas9-DNA complex after cleavage. Nucleic Acids Res 49:12411–12421

    Article  Google Scholar 

  44. Bak SY, Jung Y, Park J, Sung K, Jang HK, Bae S, Kim SK (2021) Quantitative assessment of engineered Cas9 variants for target specificity enhancement by single-molecule reaction pathway analysis. Nucleic Acids Res 49:11312–11322

    Article  Google Scholar 

  45. Globyte V, Joo C (2019) Single-molecule FRET studies of Cas9 endonuclease. Meth Enzymol 616:313–335

    Article  Google Scholar 

  46. Singh D, Ha T (2018) Understanding the molecular mechanisms of the CRISPR toolbox using single molecule approaches. ACS Chem Biol 13:516–526

    Article  Google Scholar 

  47. Kemmerich FE, Swoboda M, Kauert DJ, Grieb MS, Hahn S, Schwarz FW, Seidel R, Schlierf M (2016) Simultaneous single-molecule force and fluorescence sampling of DNA nanostructure conformations using magnetic tweezers. Nano Lett 16:381–386

    Article  ADS  Google Scholar 

  48. Huhle A, Klaue D, Brutzer H, Daldrop P, Joo S, Otto O, Keyser UF, Seidel R (2015) Camera-based three-dimensional real-time particle tracking at kHz rates and Angström accuracy. Nat Commun 6:5885

    Article  ADS  Google Scholar 

  49. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  Google Scholar 

  50. Cordes T, Vogelsang J, Tinnefeld P (2009) On the mechanism of Trolox as antiblinking and antibleaching reagent. J Am Chem Soc 131:5018–5019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Seidel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Madariaga-Marcos, J., Aldag, P., Kauert, D.J., Seidel, R. (2024). Correlated Single-Molecule Magnetic Tweezers and Fluorescence Measurements of DNA-Enzyme Interactions. In: Heller, I., Dulin, D., Peterman, E.J. (eds) Single Molecule Analysis . Methods in Molecular Biology, vol 2694. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3377-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3377-9_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3376-2

  • Online ISBN: 978-1-0716-3377-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics