Skip to main content

Generation of Recombinant Nucleosomes Containing Site-Specific DNA Damage

  • Protocol
  • First Online:
Base Excision Repair Pathway

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2701))

Abstract

Eukaryotic DNA exists in chromatin, where the genomic DNA is packaged into a fundamental repeating unit known as the nucleosome. In this chromatin environment, our genomic DNA is constantly under attack by exogenous and endogenous stressors that can lead to DNA damage. Importantly, this DNA damage must be repaired to prevent the accumulation of mutations and ensure normal cellular function. To date, most in-depth biochemical studies of DNA repair proteins have been performed in the context of free duplex DNA. However, chromatin can serve as a barrier that DNA repair enzymes must navigate in order find, access, and process DNA damage in the cell. To facilitate future studies of DNA repair in chromatin, we describe a protocol for generating nucleosome containing site-specific DNA damage that can be utilized for a variety of in vitro applications. This protocol describes several key steps including how to generate damaged DNA oligonucleotides, the expression and purification of recombinant histones, the refolding of histone complexes, and the reconstitution of nucleosomes containing site-specific DNA damage. These methods will enable researchers to generate nucleosomes containing site-specific DNA damage for extensive biochemical and structural studies of DNA repair in the nucleosome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindahl T, Nyberg B (1972) Rate of depurination of native deoxyribonucleic acid. Biochemistry 11(19):3610–3618

    Article  CAS  PubMed  Google Scholar 

  2. Sekiguchi M, Tsuzuki T (2002) Oxidative nucleotide damage: consequences and prevention. Oncogene 21(58):8895–8904

    Article  CAS  PubMed  Google Scholar 

  3. Kreutzer DA, Essigmann JM (1998) Oxidized, deaminated cytosines are a source of C→ T transitions in vivo. Proc Natl Acad Sci 95(7):3578–3582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17(10):1195–1214

    Article  CAS  PubMed  Google Scholar 

  5. Wallace SS, Murphy DL, Sweasy JB (2012) Base excision repair and cancer. Cancer Lett 327(1–2):73–89. https://doi.org/10.1016/j.canlet.2011.12.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Krokan HE, Bjoras M (2013) Base excision repair. Cold Spring Harb Perspect Biol 5(4):a012583. https://doi.org/10.1101/cshperspect.a012583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim Y-J, Wilson DM III (2012) Overview of base excision repair biochemistry. Curr Mol Pharmacol 5(1):3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Whitaker AM, Schaich MA, Smith MS, Flynn TS, Freudenthal BD (2017) Base excision repair of oxidative DNA damage: from mechanism to disease. Front Biosci (Landmark edition) 22:1493

    Article  CAS  Google Scholar 

  9. Wallace SS (2014) Base excision repair: a critical player in many games. DNA Repair 19:14–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beard WA, Horton JK, Prasad R, Wilson SH (2019) Eukaryotic base excision repair: new approaches shine light on mechanism. Annu Rev Biochem 88:137–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hegde ML, Hazra TK, Mitra S (2008) Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 18(1):27–47. https://doi.org/10.1038/cr.2008.8

    Article  CAS  PubMed  Google Scholar 

  12. Schermerhorn KM, Delaney S (2014) A chemical and kinetic perspective on base excision repair of DNA. Acc Chem Res 47(4):1238–1246. https://doi.org/10.1021/ar400275a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184(4139):868–871

    Article  CAS  PubMed  Google Scholar 

  14. Woodcock C, Safer J, Stanchfield J (1976) Structural repeating units in chromatin: I. evidence for their general occurrence. Exp Cell Res 97(1):101–110

    Article  CAS  PubMed  Google Scholar 

  15. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389(6648):251–260

    Article  CAS  PubMed  Google Scholar 

  16. Caffrey PJ, Delaney S (2020) Chromatin and other obstacles to base excision repair: potential roles in carcinogenesis. Mutagenesis 35(1):39–50

    CAS  PubMed  Google Scholar 

  17. Kennedy EE, Caffrey PJ, Delaney S (2018) Initiating base excision repair in chromatin. DNA Repair 71:87–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li C, Delaney S (2019) Challenges for base excision repair enzymes: acquiring access to damaged DNA in chromatin. Enzymes 45:27–57

    Article  PubMed  Google Scholar 

  19. Kumar N, Raja S, Van Houten B (2020) The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Nucleic Acids Res 48(20):11227–11243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kutuzov M, Belousova E, Ilina E, Lavrik O (2020) Impact of PARP1, PARP2 & PARP3 on the base excision repair of nucleosomal DNA. Adv Exp Med Biol 1241:47–57

    Article  CAS  PubMed  Google Scholar 

  21. Rodriguez Y, Hinz JM, Smerdon MJ (2015) Accessing DNA damage in chromatin: preparing the chromatin landscape for base excision repair. DNA Repair 32:113–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meas R, Wyrick JJ, Smerdon MJ (2019) Nucleosomes regulate base excision repair in chromatin. Mutat Res Rev Mutat Res 780:29–36. https://doi.org/10.1016/j.mrrev.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  23. Bilotti K, Kennedy EE, Li C, Delaney S (2017) Human OGG1 activity in nucleosomes is facilitated by transient unwrapping of DNA and is influenced by the local histone environment. DNA Repair (Amst) 59:1–8. https://doi.org/10.1016/j.dnarep.2017.08.010

    Article  CAS  PubMed  Google Scholar 

  24. Li C, Delaney S (2019) Histone H2A variants enhance the initiation of base excision repair in nucleosomes. ACS Chem Biol 14(5):1041–1050. https://doi.org/10.1021/acschembio.9b00229

    Article  CAS  PubMed  Google Scholar 

  25. Olmon ED, Delaney S (2017) Differential ability of five DNA glycosylases to recognize and repair damage on Nucleosomal DNA. ACS Chem Biol 12(3):692–701. https://doi.org/10.1021/acschembio.6b00921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tarantino ME, Dow BJ, Drohat AC, Delaney S (2018) Nucleosomes and the three glycosylases: high, medium, and low levels of excision by the uracil DNA glycosylase superfamily. DNA Repair (Amst) 72:56–63. https://doi.org/10.1016/j.dnarep.2018.09.008

    Article  CAS  PubMed  Google Scholar 

  27. Beard BC, Stevenson JJ, Wilson SH, Smerdon MJ (2005) Base excision repair in nucleosomes lacking histone tails. DNA Repair (Amst) 4(2):203–209. https://doi.org/10.1016/j.dnarep.2004.09.011

    Article  CAS  PubMed  Google Scholar 

  28. Beard BC, Wilson SH, Smerdon MJ (2003) Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes. Proc Natl Acad Sci U S A 100(13):7465–7470. https://doi.org/10.1073/pnas.1330328100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hinz JM, Rodriguez Y, Smerdon MJ (2010) Rotational dynamics of DNA on the nucleosome surface markedly impact accessibility to a DNA repair enzyme. Proc Natl Acad Sci U S A 107(10):4646–4651. https://doi.org/10.1073/pnas.0914443107

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meas R, Smerdon MJ (2016) Nucleosomes determine their own patch size in base excision repair. Sci Rep 6:27122. https://doi.org/10.1038/srep27122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meas R, Smerdon MJ, Wyrick JJ (2015) The amino-terminal tails of histones H2A and H3 coordinate efficient base excision repair, DNA damage signaling and postreplication repair in Saccharomyces cerevisiae. Nucleic Acids Res 43(10):4990–5001. https://doi.org/10.1093/nar/gkv372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakanishi S, Prasad R, Wilson SH, Smerdon M (2007) Different structural states in oligonucleosomes are required for early versus late steps of base excision repair. Nucleic Acids Res 35(13):4313–4321. https://doi.org/10.1093/nar/gkm436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodriguez Y, Duan M, Wyrick JJ, Smerdon MJ (2018) A cassette of basic amino acids in histone H2B regulates nucleosome dynamics and access to DNA damage. J Biol Chem 293(19):7376–7386. https://doi.org/10.1074/jbc.RA117.000358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodriguez Y, Hinz JM, Laughery MF, Wyrick JJ, Smerdon MJ (2016) Site-specific acetylation of histone H3 decreases polymerase beta activity on nucleosome Core particles in vitro. J Biol Chem 291(21):11434–11445. https://doi.org/10.1074/jbc.M116.725788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodriguez Y, Smerdon MJ (2013) The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes. J Biol Chem 288(19):13863–13875. https://doi.org/10.1074/jbc.M112.441444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Howard MJ, Rodriguez Y, Wilson SH (2017) DNA polymerase beta uses its lyase domain in a processive search for DNA damage. Nucleic Acids Res 45(7):3822–3832. https://doi.org/10.1093/nar/gkx047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodriguez Y, Horton JK, Wilson SH (2019) Histone H3 lysine 56 acetylation enhances AP endonuclease 1-mediated repair of AP sites in nucleosome core particles. Biochemistry 58(35):3646–3655. https://doi.org/10.1021/acs.biochem.9b00433

    Article  CAS  PubMed  Google Scholar 

  38. Rodriguez Y, Howard MJ, Cuneo MJ, Prasad R, Wilson SH (2017) Unencumbered pol beta lyase activity in nucleosome core particles. Nucleic Acids Res 45(15):8901–8915. https://doi.org/10.1093/nar/gkx593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Banerjee DR, Deckard CE 3rd, Elinski MB, Buzbee ML, Wang WW, Batteas JD, Sczepanski JT (2018) Plug-and-play approach for preparing chromatin containing site-specific DNA modifications: the influence of chromatin structure on base excision repair. J Am Chem Soc 140(26):8260–8267. https://doi.org/10.1021/jacs.8b04063

    Article  CAS  PubMed  Google Scholar 

  40. Banerjee DR, Deckard CE, Zeng Y, Sczepanski JT (2019) Acetylation of the histone H3 tail domain regulates base excision repair on higher-order chromatin structures. Sci Rep 9(1):1–11

    Article  Google Scholar 

  41. Huggins CF, Chafin DR, Aoyagi S, Henricksen LA, Bambara RA, Hayes JJ (2002) Flap endonuclease 1 efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes. Mol Cell 10(5):1201–1211

    Article  CAS  PubMed  Google Scholar 

  42. Nilsen H, Lindahl T, Verreault A (2002) DNA base excision repair of uracil residues in reconstituted nucleosome core particles. EMBO J 21(21):5943–5952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Menoni H, Gasparutto D, Hamiche A, Cadet J, Dimitrov S, Bouvet P, Angelov D (2007) ATP-dependent chromatin remodeling is required for base excision repair in conventional but not in variant H2A.Bbd nucleosomes. Mol Cell Biol 27(17):5949–5956. https://doi.org/10.1128/MCB.00376-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Menoni H, Shukla MS, Gerson V, Dimitrov S, Angelov D (2012) Base excision repair of 8-oxoG in dinucleosomes. Nucleic Acids Res 40(2):692–700. https://doi.org/10.1093/nar/gkr761

    Article  CAS  PubMed  Google Scholar 

  45. Prasad A, Wallace SS, Pederson DS (2007) Initiation of base excision repair of oxidative lesions in nucleosomes by the human, bifunctional DNA glycosylase NTH1. Mol Cell Biol 27(24):8442–8453. https://doi.org/10.1128/MCB.00791-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Odell ID, Barbour JE, Murphy DL, Della-Maria JA, Sweasy JB, Tomkinson AE, Wallace SS, Pederson DS (2011) Nucleosome disruption by DNA ligase III-XRCC1 promotes efficient base excision repair. Mol Cell Biol 31(22):4623–4632. https://doi.org/10.1128/MCB.05715-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Odell ID, Newick K, Heintz NH, Wallace SS, Pederson DS (2010) Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, NEIL1. DNA Repair (Amst) 9(2):134–143. https://doi.org/10.1016/j.dnarep.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  48. Jagannathan I, Pepenella S, Hayes JJ (2011) Activity of FEN1 endonuclease on nucleosome substrates is dependent upon DNA sequence but not flap orientation. J Biol Chem 286(20):17521–17529. https://doi.org/10.1074/jbc.M111.229658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang C, Sengupta S, Hegde PM, Mitra J, Jiang S, Holey B, Sarker AH, Tsai MS, Hegde ML, Mitra S (2017) Regulation of oxidized base damage repair by chromatin assembly factor 1 subunit a. Nucleic Acids Res 45(2):739–748. https://doi.org/10.1093/nar/gkw1024

    Article  CAS  PubMed  Google Scholar 

  50. Fu I, Smith DJ, Broyde S (2019) Rotational and translational positions determine the structural and dynamic impact of a single ribonucleotide incorporated in the nucleosome. DNA Repair (Amst) 73:155–163. https://doi.org/10.1016/j.dnarep.2018.11.012

    Article  CAS  PubMed  Google Scholar 

  51. Hinz JM (2014) Impact of abasic site orientation within nucleosomes on human APE1 endonuclease activity. Mutat Res Fund Mol Mecha Mutag 766–767:19–24. https://doi.org/10.1016/j.mrfmmm.2014.05.008

    Article  CAS  Google Scholar 

  52. Hinz JM, Mao P, McNeill DR, Wilson DM 3rd (2015) Reduced nuclease activity of Apurinic/Apyrimidinic endonuclease (APE1) variants on nucleosomes: identification of access residues. J Biol Chem 290(34):21067–21075. https://doi.org/10.1074/jbc.M115.665547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maher RL, Prasad A, Rizvanova O, Wallace SS, Pederson DS (2013) Contribution of DNA unwrapping from histone octamers to the repair of oxidatively damaged DNA in nucleosomes. DNA Repair (Amst) 12(11):964–971. https://doi.org/10.1016/j.dnarep.2013.08.010

    Article  CAS  PubMed  Google Scholar 

  54. Maher RL, Wallace SS, Pederson DS (2019) The lyase activity of bifunctional DNA glycosylases and the 3′-diesterase activity of APE1 contribute to the repair of oxidized bases in nucleosomes. Nucleic Acids Res 47(6):2922–2931. https://doi.org/10.1093/nar/gky1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maher RL, Marsden CG, Averill AM, Wallace SS, Sweasy JB, Pederson DS (2017) Human cells contain a factor that facilitates the DNA glycosylase-mediated excision of oxidized bases from occluded sites in nucleosomes. DNA Repair (Amst) 57:91–97. https://doi.org/10.1016/j.dnarep.2017.06.029

    Article  CAS  PubMed  Google Scholar 

  56. Caffrey PJ, Delaney S (2021) Nucleosome Core particles lacking H2B or H3 tails are altered structurally and have Differential Base excision repair fingerprints. Biochemistry 60(3):210–218

    Article  CAS  PubMed  Google Scholar 

  57. Kennedy EE, Li C, Delaney S (2019) Global repair profile of human alkyladenine DNA glycosylase on nucleosomes reveals DNA packaging effects. ACS Chem Biol 14(8):1687–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Caffrey PJ, Kher R, Bian K, Li D, Delaney S (2020) Comparison of the base excision and direct reversal repair pathways for correcting 1, N 6-Ethenoadenine in strongly positioned nucleosome Core particles. Chem Res Toxicol 33(7):1888–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cannan WJ, Tsang BP, Wallace SS, Pederson DS (2014) Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages. J Biol Chem 289(29):19881–19893. https://doi.org/10.1074/jbc.M114.571588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bennett L, Madders E, Parsons JL (2019) HECTD1 promotes base excision repair in nucleosomes through chromatin remodelling. Nucleic Acids Res 48:1301. https://doi.org/10.1093/nar/gkz1129

    Article  CAS  PubMed Central  Google Scholar 

  61. Cannan WJ, Rashid I, Tomkinson AE, Wallace SS, Pederson DS (2017) The human ligase IIIalpha-XRCC1 protein complex performs DNA Nick repair after transient unwrapping of Nucleosomal DNA. J Biol Chem 292(13):5227–5238. https://doi.org/10.1074/jbc.M116.736728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chafin DR, Vitolo JM, Henricksen LA, Bambara RA, Hayes JJ (2000) Human DNA ligase I efficiently seals nicks in nucleosomes. EMBO J 19(20):5492–5501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kutuzov M, Belousova E, Kurgina T, Ukraintsev A, Vasileva I, Khodyreva S, Lavrik O (2021) The contribution of PARP1, PARP2 and poly (ADP-ribosyl) ation to base excision repair in the nucleosomal context. Sci Rep 11(1):1–17

    Article  Google Scholar 

  64. Bilotti K, Tarantino ME, Delaney S (2018) Human oxoguanine glycosylase 1 removes solution accessible 8-oxo-7, 8-dihydroguanine lesions from globally substituted nucleosomes except in the dyad region. Biochemistry 57(9):1436–1439

    Article  CAS  PubMed  Google Scholar 

  65. Ura K, Araki M, Saeki H, Masutani C, Ito T, Iwai S, Mizukoshi T, Kaneda Y, Hanaoka F (2001) ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes. EMBO J 20(8):2004–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ren M, Shang M, Wang H, Xi Z, Zhou C (2021) Histones participate in base excision repair of 8-oxodGuo by transiently cross-linking with active repair intermediates in nucleosome core particles. Nucleic Acids Res 49(1):257–268

    Article  PubMed  Google Scholar 

  67. Dyer PN, Edayathumangalam RS, White CL, Bao Y, Chakravarthy S, Muthurajan UM, Luger K (2003) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375:23–44

    Article  Google Scholar 

  68. Kosmoski JV, Smerdon MJ (1999) Synthesis and nucleosome structure of DNA containing a UV photoproduct at a specific site. Biochemistry 38(29):9485–9494

    Article  CAS  PubMed  Google Scholar 

  69. Sczepanski JT, Wong RS, McKnight JN, Bowman GD, Greenberg MM (2010) Rapid DNA-protein cross-linking and strand scission by an abasic site in a nucleosome core particle. Proc Natl Acad Sci U S A 107(52):22475–22480. https://doi.org/10.1073/pnas.1012860108

    Article  PubMed  PubMed Central  Google Scholar 

  70. Duan M-R, Smerdon MJ (2010) UV damage in DNA promotes nucleosome unwrapping. J Biol Chem 285(34):26295–26303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lowary P, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276(1):19–42

    Article  CAS  PubMed  Google Scholar 

  72. Weaver TM, Hoitsma NM, Spencer JJ, Gakhar L, Schnicker NJ, Freudenthal BD (2022) Structural basis for APE1 processing DNA damage in the nucleosome. Nat Commun 13(1):5390. https://doi.org/10.1038/s41467-022-33057-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Deckard CE III, Sczepanski JT (2021) Reversible chromatin condensation by the DNA repair and demethylation factor thymine DNA glycosylase. Nucleic Acids Res 49(5):2450–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bai J, Zhang Y, Xi Z, Greenberg MM, Zhou C (2018) Oxidation of 8-Oxo-7,8-dihydro-2′-deoxyguanosine leads to substantial DNA-histone cross-links within nucleosome Core particles. Chem Res Toxicol 31(12):1364–1372. https://doi.org/10.1021/acs.chemrestox.8b00244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Li F, Zhang Y, Bai J, Greenberg MM, Xi Z, Zhou C (2017) 5-Formylcytosine yields DNA-protein cross-links in nucleosome Core particles. J Am Chem Soc 139(31):10617–10620. https://doi.org/10.1021/jacs.7b05495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Taylor J-S (2015) Design, synthesis, and characterization of nucleosomes containing site-specific DNA damage. DNA Repair 36:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vasudevan D, Chua EY, Davey CA (2010) Crystal structures of nucleosome core particles containing the ‘601’strong positioning sequence. J Mol Biol 403(1):1–10

    Article  CAS  PubMed  Google Scholar 

  78. Stark GR, Stein WH, Moore S (1960) Reactions of the cyanate present in aqueous urea with amino acids and proteins. J Biol Chem 235(11):3177–3181

    Article  CAS  Google Scholar 

  79. Adkins NL, Swygert SG, Kaur P, Niu H, Grigoryev SA, Sung P, Wang H, Peterson CL (2017) Nucleosome-like, single-stranded DNA (ssDNA)-histone octamer complexes and the implication for DNA double strand break repair. J Biol Chem 292(13):5271–5281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kujirai T, Arimura Y, Fujita R, Horikoshi N, Machida S, Kurumizaka H (2018) Methods for preparing nucleosomes containing histone variants. In: Histone variants. Springer, pp 3–20

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institute of General Medical Science R35-GM128562 (B.J.R., T.M.W., J.J.S., and B.D.F) and the National Institute of General Medical Science F32-GM140718 (T.M.W.). We also thank Drs. Karolin Luger, Catherine Musselman, and Michael Poirier for the histone plasmids used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bret D. Freudenthal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ryan, B.J., Weaver, T.M., Spencer, J.J., Freudenthal, B.D. (2023). Generation of Recombinant Nucleosomes Containing Site-Specific DNA Damage. In: Bhakat, K.K., Hazra, T.K. (eds) Base Excision Repair Pathway. Methods in Molecular Biology, vol 2701. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3373-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3373-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3372-4

  • Online ISBN: 978-1-0716-3373-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics