Skip to main content

Tagging Recombinant Proteins to Enhance Solubility and Aid Purification

  • Protocol
  • First Online:
Protein Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2699))

  • 943 Accesses

Abstract

Protein fusion technology has had a major impact on the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide “tags” has a long history, and there is a considerable repertoire of these that can be used to address issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. In this chapter, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nikaido H (1994) Maltose transport system of Escherichia coli: an ABC-type transporter. FEBS Lett 346:55–58

    Article  CAS  PubMed  Google Scholar 

  2. Guan C, Li P, Riggs PD et al (1988) Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene 67:21–30

    Article  PubMed  Google Scholar 

  3. Pattenden LK, Thomas WG (2008) Amylose affinity chromatography of maltose-binding protein: purification by both native and novel matrix-assisted dialysis refolding methods. Methods Mol Biol 421:169–189

    CAS  PubMed  Google Scholar 

  4. Lénon M, Ke N, Ren G et al (2021) A useful epitope tag derived from maltose binding protein. Protein Sci 30:1235–1246

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sachdev D, Chirgwin JM (2000) Fusions to maltose-binding protein: control of folding and solubility in protein purification. Methods Enzymol 326:312–321

    Article  CAS  PubMed  Google Scholar 

  7. Riggs P (2000) Expression and purification of recombinant proteins by fusion to maltose-binding protein. Mol Biotechnol 15:51–63

    Article  CAS  PubMed  Google Scholar 

  8. Dyson MR, Shadbolt SP, Vincent KJ et al (2004) Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC Biotechnol 4:32

    Article  PubMed  PubMed Central  Google Scholar 

  9. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408

    Article  CAS  PubMed  Google Scholar 

  10. Kataeva I, Chang J, Xu H et al (2005) Improving solubility of Shewanella oneidensis MR-1 and Clostridium thermocellum JW-20 proteins expressed into Escherichia coli. J Proteome Res 4:1942–1951

    Article  CAS  PubMed  Google Scholar 

  11. Busso D, Delagoutte-Busso B, Moras D (2005) Construction of a set gateway-based destination vectors for high-throughput cloning and expression screening in Escherichia coli. Anal Biochem 343:313–321

    Article  CAS  PubMed  Google Scholar 

  12. Zhao H, Xu Y, Li X et al (2021) Expression and purification of a recombinant enterotoxin protein using different E. coli host strains and expression vectors. Protein J 40:245–254

    Article  CAS  PubMed  Google Scholar 

  13. Braud S, Moutiez M, Belin P et al (2005) Dual expression system suitable for high-throughput fluorescence-based screening and production of soluble proteins. J Proteome Res 4:2137–2147

    Article  CAS  PubMed  Google Scholar 

  14. Gräslund S, Eklund M, Falk R et al (2002) A novel affinity gene fusion system allowing protein A-based recovery of non-immunoglobulin gene products. J Biotechnol 99:41–50

    Article  PubMed  Google Scholar 

  15. Nguyen AN, Song JA, Nguyen MT et al (2017) Prokaryotic soluble expression and purification of bioactive human fibroblast growth factor 21 using maltose-binding protein. Sci Rep 7:16139

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nallamsetty S, Waugh DS (2006) Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners. Protein Expr Purif 45:175

    Article  CAS  PubMed  Google Scholar 

  17. Randall LL, Hardy SJ, Topping TB et al (1998) The interaction between the chaperone SecB and its ligands: evidence for multiple subsites for binding. Protein Sci 7:2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Addgene: Homepage. https://www.addgene.org/

  19. Hamilton SR, O’Donnell JB, Hammet A et al (2002) AMP-activated protein kinase kinase: detection with recombinant AMPK alpha1 subunit. Biochem Biophys Res Commun 293:892–898

    Article  CAS  PubMed  Google Scholar 

  20. Nallamsetty S, Austin BP, Penrose KJ et al (2005) Gateway vectors for the production of combinatorially-tagged His6-MBP fusion proteins in the cytoplasm and periplasm of Escherichia coli. Protein Sci 14:2964–2971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nallamsetty S, Waugh DS (2007) A generic protocol for the expression and purification of recombinant proteins in Escherichia coli using a combinatorial His6-maltose binding protein fusion tag. Nat Protoc 2:383

    Article  CAS  PubMed  Google Scholar 

  22. Routzahn KM, Waugh DS (2002) Differential effects of supplementary affinity tags on the solubility of MBP fusion proteins. J Struct Funct Genom 2:83

    Article  CAS  Google Scholar 

  23. Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40

    Article  CAS  PubMed  Google Scholar 

  24. Boumaiza M, Trabelsi K, Choucha Z et al (2020) Production and characterization of a fusion form of hepatitis E virus tORF2 capsid protein in Escherichia coli. Prep Biochem Biotechnol 51:562–569

    Article  PubMed  Google Scholar 

  25. Hunt I (2005) From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr Purif 40:1–22

    Article  CAS  PubMed  Google Scholar 

  26. Kaplan W, Husler P, Klump H et al (1997) Conformational stability of pGEX-expressed Schistosoma japonicum glutathione S-transferase: a detoxification enzyme and fusion-protein affinity tag. Protein Sci 6:399–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Frangioni JV, Neel BG (1993) Use of a general purpose mammalian expression vector for studying intracellular protein targeting: identification of critical residues in the nuclear lamin A/C nuclear localization signal. J Cell Sci 105:481

    Article  CAS  PubMed  Google Scholar 

  28. Vikis HG, Guan KL (2004) Glutathione-S-transferase-fusion based assays for studying protein-protein interactions. Methods Mol Biol 261:175–186

    CAS  PubMed  Google Scholar 

  29. Singh CR, Asano K (2007) Localization and characterization of protein-protein interaction sites. Methods Enzymol 429:139–161

    Article  CAS  PubMed  Google Scholar 

  30. Tang Y, Qiu J, Machner M et al (2017) Discovering protein-protein interactions using nucleic acid programmable protein arrays. Curr Protoc Cell Biol 74:15.21.1–15.21.14

    Article  PubMed  Google Scholar 

  31. Jung JW, Jung SH, Kim HS et al (2006) High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor. Proteomics 6:1110

    Article  CAS  PubMed  Google Scholar 

  32. Saaem I, Papasotiropoulos V, Wang T et al (2007) Hydrogel-based protein nanoarrays. J Nanosci Nanotechnol 7:2623–2632

    Article  CAS  PubMed  Google Scholar 

  33. Zhan Y, Song X, Zhou GW (2001) Structural analysis of regulatory protein domains using GST-fusion proteins. Gene 281:1–9

    Article  CAS  PubMed  Google Scholar 

  34. Smyth DR, Mrozkiewicz MK, McGrath WJ et al (2003) Crystal structures of fusion proteins with large-affinity tags. Protein Sci 12:1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dingeldein APG, Lindberg MJ, Ådén J et al (2019) Bax to the future – a novel, high-yielding approach for purification and expression of full-length Bax protein for structural studies. Protein Expr Purif 158:20–26

    Article  CAS  PubMed  Google Scholar 

  36. Zheng G, Yang YC (2004) ZNF76, a novel transcriptional repressor targeting TATA-binding protein, is modulated by sumoylation. J Biol Chem 279:42410–42421

    Article  CAS  PubMed  Google Scholar 

  37. Gill G (2005) Something about SUMO inhibits transcription. Curr Opin Genet Dev 15:536

    Article  CAS  PubMed  Google Scholar 

  38. Kawabe Y, Seki M, Seki T et al (2000) Covalent modification of the Werner’s syndrome gene product with the ubiquitin-related protein, SUMO-1. J Biol Chem 275:20963–20966

    Article  CAS  PubMed  Google Scholar 

  39. Muller S, Matunis MJ, Dejean A (1998) Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 17:61–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Melchior F (2000) SUMO—nonclassical ubiquitin. Annu Rev Cell Dev Biol 16:591

    Article  CAS  PubMed  Google Scholar 

  41. Bayer P, Arndt A, Metzger S et al (1998) Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol 280:275–286

    Article  CAS  PubMed  Google Scholar 

  42. Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355

    Article  CAS  PubMed  Google Scholar 

  43. Varejão N, Lascorz J, Li Y et al (2020) Molecular mechanisms in SUMO conjugation. Biochem Soc Trans 48:123–135

    Article  PubMed  Google Scholar 

  44. Johnson ES, Blobel G (1999) Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J Cell Biol 147:981–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tatham MH, Jaffray E, Vaughan OA et al (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276:35368–35374

    Article  CAS  PubMed  Google Scholar 

  46. Catanzariti AM, Soboleva TA, Jans DA et al (2004) An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Sci 13:1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Malakhov MP, Mattern MR, Malakhova OA et al (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genom 5:75

    Article  CAS  Google Scholar 

  48. Marblestone JG, Edavettal SC, Lim Y et al (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15:182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zuo X, Li S, Hall J et al (2005) Enhanced expression and purification of membrane proteins by SUMO fusion in Escherichia coli. J Struct Funct Genomics 6:103–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu Y, Hua H, Huang Z et al (2020) Cloning, expression, and purification of porcine adrenocorticotropic hormone in Escherichia coli. Protein Expr Purif 176:105731

    Article  CAS  PubMed  Google Scholar 

  51. Butt TR, Edavettal SC, Hall JP et al (2005) SUMO fusion technology for difficult-to-express proteins. Protein Expr Purif 43:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tan MS, Teh YH, Ho KL et al (2020) An application of pET SUMO protein expression system in Escherichia coli: cloning, expression, purification, and characterisation of native Kras4B G12V oncoprotein. Protein J 39:54–61

    Article  CAS  PubMed  Google Scholar 

  53. Zuo X, Mattern MR, Tan R et al (2005) Expression and purification of SARS coronavirus proteins using SUMO-fusions. Protein Expr Purif 42:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim DS, Kim SW, Song JM et al (2019) A new prokaryotic expression vector for the expression of antimicrobial peptide abaecin using SUMO fusion tag. BMC Biotechnol 19:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lee J, Kim SH (2009) High-throughput T7 LIC vector for introducing C-terminal poly-histidine tags with variable lengths without extra sequences. Protein Expr Purif 63:58

    Article  CAS  PubMed  Google Scholar 

  56. Liu Z-H, Huang D, Fu X-J et al (2018) Comparison of three commonly used fusion tags for the expression of nanobodies in the cytoplasm of Escherichia coli. Biotechnol Biotechnol Equip 32:462–469

    Article  CAS  Google Scholar 

  57. Catic A, Misaghi S, Korbel GA et al (2007) ElaD, a deubiquitinating protease expressed by E. coli. PLoS One 2:e381

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhou XF, Zhang CL, Gao XP et al (2020) A simple and rapid protein purification method based on cell-surface display of SUMO-fused recombinant protein and Ulp1 protease. AMB Express 10:1–9

    Article  Google Scholar 

  59. Liu L, Spurrier J, Butt TR et al (2008) Enhanced protein expression in the baculovirus/insect cell system using engineered SUMO fusions. Protein Expr Purif 62:21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Peroutka RJ, Elshourbagy N, Piech T et al (2008) Enhanced protein expression in mammalian cells using engineered SUMO fusions: secreted phospholipase A2. Protein Sci 17:1586–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Panavas T, Sanders C, Butt TR (2009) SUMO fusion technology for enhanced protein production in prokaryotic and eukaryotic expression systems. Methods Mol Biol 497:303–317

    Article  CAS  PubMed  Google Scholar 

  62. Rodriguez AV, Frey S, Görlich D (2019) Engineered SUMO/protease system identifies Pdr6 as a bidirectional nuclear transport receptor. J Cell Biol 218:2006

    Article  CAS  Google Scholar 

  63. Katti SK, LeMaster DM, Eklund H (1990) Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol 212:167–184

    Article  CAS  PubMed  Google Scholar 

  64. LaVallie ER, DiBlasio EA, Kovacic S et al (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y) 11:187–193

    CAS  PubMed  Google Scholar 

  65. Smith PA, Tripp BC, DiBlasio-Smith EA et al (1998) A plasmid expression system for quantitative in vivo biotinylation of thioredoxin fusion proteins in Escherichia coli. Nucleic Acids Res 26:1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. LaVallie ER, Lu Z, Diblasio-Smith EA et al (2000) Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. Methods Enzymol 326:322–340

    Article  CAS  PubMed  Google Scholar 

  67. Dummler A, Lawrence AM, Marco A (2005) Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors. Microb Cell Fact 4:34

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hammarstrom M, Hellgren N, Berg S et al (2002) Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci 11:313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao J, Yu HY, Zhao Y et al (2019) Soluble expression, rapid purification, biological identification of chicken interferon-alpha using a thioredoxin fusion system in E. coli and its antiviral effects to H9N2 avian influenza virus. Prep Biochem Biotechnol 49:192–201

    Article  CAS  PubMed  Google Scholar 

  70. Kim S, Lee SB (2008) Soluble expression of archaeal proteins in Escherichia coli by using fusion-partners. Protein Expr Purif 62:116

    Article  CAS  PubMed  Google Scholar 

  71. Bogomolovas J, Simon B, Sattler M et al (2009) Screening of fusion partners for high yield expression and purification of bioactive viscotoxins. Protein Expr Purif 64:16

    Article  CAS  PubMed  Google Scholar 

  72. Derewenda ZS (2004) The use of recombinant methods and molecular engineering in protein crystallization. Methods 34:354–363

    Article  CAS  PubMed  Google Scholar 

  73. Corsini L, Hothorn M, Scheffzek K et al (2008) Thioredoxin as a fusion tag for carrier-driven crystallization. Protein Sci 17:2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gusarov I, Nudler E (2001) Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell 107:437

    Article  CAS  PubMed  Google Scholar 

  75. Davis GD, Elisee C, Newham DM et al (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng 65:382–388

    Article  CAS  PubMed  Google Scholar 

  76. Humer D, Spadiut O (2019) Improving the performance of horseradish peroxidase by site-directed mutagenesis. Int J Mol Sci 20:916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Harrison RG (2000) Expression of soluble heterologous proteins via fusion with NusA protein. inNovations 11:4–7

    Google Scholar 

  78. Cabrita LD, Dai W, Bottomley SP (2006) A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production. BMC Biotechnol 6:12

    Article  PubMed  PubMed Central  Google Scholar 

  79. Costa SJ, Almeida A, Castro A et al (2013) The novel Fh8 and H fusion partners for soluble protein expression in Escherichia coli: a comparison with the traditional gene fusion technology. Appl Microbiol Biotechnol 97:6779

    Article  CAS  PubMed  Google Scholar 

  80. Costa SJ, Coelho E, Franco L et al (2013) The Fh8 tag: a fusion partner for simple and cost-effective protein purification in Escherichia coli. Protein Expr Purif 92:163

    Article  CAS  PubMed  Google Scholar 

  81. Kim YS, Karisa N, Jeon WY et al (2019) High-level production of N-terminal pro-brain natriuretic peptide, as a calibrant of heart failure diagnosis, in Escherichia coli. Appl Microbiol Biotechnol 103:4779–4788

    Article  CAS  PubMed  Google Scholar 

  82. Ohana RF, Encell LP, Zhao K et al (2009) HaloTag7: a genetically engineered tag that enhances bacterial expression of soluble proteins and improves protein purification. Protein Expr Purif 68:110–120

    Article  CAS  PubMed  Google Scholar 

  83. Graslund S, Eklund M, Falk R et al (2002) A novel affinity gene fusion system allowing protein A-based recovery of non-immunoglobulin gene products. J Biotechnol 99:41–50

    Article  PubMed  Google Scholar 

  84. Zhao Y, Benita Y, Lok M et al (2005) Multi-antigen immunization using IgG binding domain ZZ as carrier. Vaccine 23:5082

    Article  CAS  PubMed  Google Scholar 

  85. Cheng Y, Patel DJ (2004) An efficient system for small protein expression and refolding. Biochem Biophys Res Commun 317:401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Card PB, Gardner KH (2005) Identification and optimization of protein domains for NMR studies. Methods Enzymol 394:3–6

    Article  CAS  PubMed  Google Scholar 

  87. Bao WJ, Gao YG, Chang YG et al (2006) Highly efficient expression and purification system of small-size protein domains in Escherichia coli for biochemical characterization. Protein Expr Purif 47:599

    Article  CAS  PubMed  Google Scholar 

  88. Cheng C, Wu S, Cui L et al (2017) A novel Ffu fusion system for secretory expression of heterologous proteins in Escherichia coli. Microb Cell Factories 16:1–12

    Article  CAS  Google Scholar 

  89. Islam MM, Miura S, Hasan MN et al (2020) Anti-dengue ED3 long-term immune response with T-cell memory generated using solubility controlling peptide tags. Front Immunol 11:333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nautiyal K, Kuroda Y (2018) A SEP tag enhances the expression, solubility and yield of recombinant TEV protease without altering its activity. New Biotechnol 42:77–84

    Article  CAS  Google Scholar 

  91. Kronqvist N, Sarr M, Lindqvist A et al (2017) Efficient protein production inspired by how spiders make silk. Nat Commun 8:1–15

    Article  Google Scholar 

  92. Paraskevopoulou V, Falcone FH (2018) Polyionic tags as enhancers of protein solubility in recombinant protein expression. Microorganisms 6:47

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chatterjee DK, Esposito D (2006) Enhanced soluble protein expression using two new fusion tags. Protein Expr Purif 46:122–129

    Article  CAS  PubMed  Google Scholar 

  94. Zhang YB, Howitt J, McCorkle S et al (2004) Protein aggregation during overexpression limited by peptide extensions with large net negative charge. Protein Expr Purif 36:207–216

    Article  CAS  PubMed  Google Scholar 

  95. Porath J, Carlsson J, Olsson I et al (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598

    Article  CAS  PubMed  Google Scholar 

  96. Storcksdieck genannt Bonsmann S, Hurrell RF (2007) Iron-binding properties, amino acid composition, and structure of muscle tissue peptides from in vitro digestion of different meat sources. J Food Sci 72:S019

    CAS  PubMed  Google Scholar 

  97. Swain JH, Tabatabai LB, Reddy MB (2002) Histidine content of low-molecular-weight beef proteins influences nonheme iron bioavailability in Caco-2 cells. J Nutr 132:245

    Article  CAS  PubMed  Google Scholar 

  98. Taylor PG, Martinez-Torres C, Romano EL et al (1986) The effect of cysteine-containing peptides released during meat digestion on iron absorption in humans. Am J Clin Nutr 43:68–71

    Article  CAS  PubMed  Google Scholar 

  99. Porath J (1992) Immobilized metal ion affinity chromatography. Protein Expr Purif 3:263–281

    Article  CAS  PubMed  Google Scholar 

  100. Ueda EK, Gout PW, Morganti L (2003) Current and prospective applications of metal ion-protein binding. J Chromatogr A 988:1–23

    Article  CAS  PubMed  Google Scholar 

  101. Chaga GS (2001) Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J Biochem Biophys Methods 49:313–334

    Article  CAS  PubMed  Google Scholar 

  102. Li M, Su ZG, Janson JC (2004) In vitro protein refolding by chromatographic procedures. Protein Expr Purif 33:1–10

    Article  PubMed  Google Scholar 

  103. Hutchinson MH, Chase HA (2006) Adsorptive refolding of histidine-tagged glutathione S-transferase using metal affinity chromatography. J Chromatogr A 1128:125–132

    Article  CAS  PubMed  Google Scholar 

  104. Rogl H, Kosemund K, Kuhlbrandt W et al (1998) Refolding of Escherichia coli produced membrane protein inclusion bodies immobilised by nickel chelating chromatography. FEBS Lett 432:21–26

    Article  CAS  PubMed  Google Scholar 

  105. Zouhar J, Nanak E, Brzobohaty B (1999) Expression, single-step purification, and matrix-assisted refolding of a maize cytokinin glucoside-specific beta-glucosidase. Protein Expr Purif 17:153–162

    Article  CAS  PubMed  Google Scholar 

  106. Dong XY, Chen LJ, Sun Y (2009) Refolding and purification of histidine-tagged protein by artificial chaperone-assisted metal affinity chromatography. J Chromatogr A 1216:5207–5213

    Article  CAS  PubMed  Google Scholar 

  107. Manjasetty BA, Turnbull AP, Panjikar S et al (2008) Automated technologies and novel techniques to accelerate protein crystallography for structural genomics. Proteomics 8:612–625

    Article  CAS  PubMed  Google Scholar 

  108. Sharma SK, Evans DB, Vosters AF et al (1991) Metal affinity chromatography of recombinant HIV-1 reverse transcriptase containing a human renin cleavable metal binding domain. Biotechnol Appl Biochem 14:69–81

    CAS  PubMed  Google Scholar 

  109. Zhang Z, Tong KT, Belew M et al (1992) Production, purification and characterization of recombinant human interferon gamma. J Chromatogr 604:143

    Article  CAS  PubMed  Google Scholar 

  110. Franke CA, Hruby DE (1993) Expression and single-step purification of enzymatically active vaccinia virus thymidine kinase containing an engineered oligohistidine domain by immobilized metal affinity chromatography. Protein Expr Purif 4:101–109

    Article  CAS  PubMed  Google Scholar 

  111. Kipriyanov SM, Dubel S, Breitling F et al (1995) Bacterial expression and refolding of single-chain Fv fragments with C-terminal cysteines. Cell Biophys 26:187–204

    Article  CAS  PubMed  Google Scholar 

  112. Vaughan TJ, Williams AJ, Pritchard K et al (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14:309–314

    Article  CAS  PubMed  Google Scholar 

  113. Eldin P, Pauza ME, Hieda Y et al (1997) High-level secretion of two antibody single chain Fv fragments by Pichia pastoris. J Immunol Methods 201:67

    Article  CAS  PubMed  Google Scholar 

  114. Passafiume M, Vulliez-le Normand B, Riottot MM et al (1998) Sequence analysis of a monoclonal antibody specific for the preS2 region of hepatitis B surface antigen, and the cloning, expression and characterisation of its single-chain Fv construction. FEBS Lett 441:407

    Article  CAS  PubMed  Google Scholar 

  115. Steen J, Uhlen M, Hober S et al (2006) High-throughput protein purification using an automated set-up for high-yield affinity chromatography. Protein Expr Purif 46:173–178

    Article  CAS  PubMed  Google Scholar 

  116. Riguero V, Clifford R, Dawley M et al (2020) Immobilized metal affinity chromatography optimization for poly-histidine tagged proteins. J Chromatogr A 1629:461505

    Article  CAS  PubMed  Google Scholar 

  117. Kwon K, Grose C, Pieper R et al (2009) High quality protein microarray using in situ protein purification. BMC Biotechnol 9:72

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wiesler SC, Weinzierl ROJ (2012) High-throughput purification of affinity-tagged recombinant proteins. J Vis Exp 66:e4110

    Google Scholar 

  119. Wiesler SC, Weinzierl ROJ (2015) Robotic high-throughput purification of affinity-tagged recombinant proteins. Methods Mol Biol 1286:97–106

    Article  CAS  PubMed  Google Scholar 

  120. Napiorkowska M, Pestalozzi L, Panke S et al (2021) High-throughput optimization of recombinant protein production in microfluidic gel beads. Small 17:2005523

    Article  CAS  Google Scholar 

  121. Hang Q, Woods L, Feiss M et al (1999) Cloning, expression, and biochemical characterization of hexahistidine-tagged terminase proteins. J Biol Chem 274:15305–15314

    Article  CAS  PubMed  Google Scholar 

  122. Gaberc-Porekar V, Menart V, Jevsevar S et al (1999) Histidines in affinity tags and surface clusters for immobilized metal-ion affinity chromatography of trimeric tumor necrosis factor alpha. J Chromatogr A 852:117–128

    Article  CAS  PubMed  Google Scholar 

  123. Chant A, Kraemer-Pecore CM, Watkin R et al (2005) Attachment of a histidine tag to the minimal zinc finger protein of the Aspergillus nidulans gene regulatory protein AreA causes a conformational change at the DNA-binding site. Protein Expr Purif 39:152

    Article  CAS  PubMed  Google Scholar 

  124. Chaga G, Bochkariov DE, Jokhadze GG et al (1999) Natural poly-histidine affinity tag for purification of recombinant proteins on cobalt(II)-carboxymethylaspartate crosslinked agarose. J Chromatogr A 864:247–256

    Article  CAS  PubMed  Google Scholar 

  125. Lingg N, Öhlknecht C, Fischer A et al (2020) Proteomics analysis of host cell proteins after immobilized metal affinity chromatography: influence of ligand and metal ions. J Chromatogr A 1633:461649

    Article  CAS  PubMed  Google Scholar 

  126. Xu CG, Fan XJ, Fu YJ et al (2008) Effect of location of the His-tag on the production of soluble and functional Buthus martensii Karsch insect toxin. Protein Expr Purif 59:103

    Article  CAS  PubMed  Google Scholar 

  127. Loughran ST, Loughran NB, Ryan BJ et al (2006) Modified His-tag fusion vector for enhanced protein purification by immobilized metal affinity chromatography. Anal Biochem 355:148–150

    Article  CAS  PubMed  Google Scholar 

  128. Grisshammer R, White JF, Trinh LB et al (2005) Large-scale expression and purification of a G-protein-coupled receptor for structure determination—an overview. J Struct Funct Genomics 6:159–163

    Article  CAS  PubMed  Google Scholar 

  129. Yeliseev AA, Wong KK, Soubias O et al (2005) Expression of human peripheral cannabinoid receptor for structural studies. Protein Sci 14:2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Magnusdottir A, Johansson I, Dahlgren LG et al (2009) Enabling IMAC purification of low abundance recombinant proteins from E. coli lysates. Nat Methods 6:477–478

    Article  CAS  PubMed  Google Scholar 

  131. Liu Z, Bartlow P, Varakala R et al (2009) Use of proteomics for design of a tailored host cell for highly efficient protein purification. J Chromatogr A 1216:2433–2438

    Article  CAS  PubMed  Google Scholar 

  132. Ye K, Jin S, Ataai MM et al (2004) Tagging retrovirus vectors with a metal binding peptide and one-step purification by immobilized metal affinity chromatography. J Virol 78:9820–9827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cheeks MC, Kamal N, Sorrell A et al (2009) Immobilized metal affinity chromatography of histidine-tagged lentiviral vectors using monolithic adsorbents. J Chromatogr A 1216:2705–2711

    Article  CAS  PubMed  Google Scholar 

  134. Biswal JK, Bisht P, Subramaniam S et al (2015) Engineering foot-and-mouth disease virus serotype O IND R2/1975 for one-step purification by immobilized metal affinity chromatography. Biologicals 43:390–398

    Article  CAS  PubMed  Google Scholar 

  135. Mikel P, Vasickova P, Kralik P (2017) One-plasmid double-expression His-tag system for rapid production and easy purification of MS2 phage-like particles. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  136. Schmidt TG, Skerra A (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2:1528

    Article  CAS  PubMed  Google Scholar 

  137. Ayala JC, Pimienta E, Rodriguez C et al (2013) Use of Strep-tag II for rapid detection and purification of Mycobacterium tuberculosis recombinant antigens secreted by Streptomyces lividans. J Microbiol Methods 94:192–198

    Article  CAS  PubMed  Google Scholar 

  138. Schmidt TGM, Eichinger A, Schneider M et al (2021) The role of changing loop conformations in streptavidin versions engineered for high-affinity binding of the Strep-tag II peptide. J Mol Biol 433:166893

    Article  CAS  PubMed  Google Scholar 

  139. Xiong J, He J, Xie WP et al (2019) Rapid affinity purification of intracellular organelles using a twin strep tag. J Cell Sci 132:jcs235390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Keefe AD, Wilson DS, Seelig B et al (2001) One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-tag. Protein Expr Purif 23:440

    Article  CAS  PubMed  Google Scholar 

  141. Fuchs SM, Raines RT (2005) Polyarginine as a multifunctional fusion tag. Protein Sci 14:1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Stofko-Hahn RE, Carr DW, Scott JD (1992) A single step purification for recombinant proteins. Characterization of a microtubule associated protein (MAP 2) fragment which associates with the type II cAMP-dependent protein kinase. FEBS Lett 302:274–278

    Article  CAS  PubMed  Google Scholar 

  143. Carrard G, Koivula A, Soderlund H et al (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci U S A 97:10342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nahalka J, Nidetzky B (2007) Fusion to a pull-down domain: a novel approach of producing Trigonopsis variabilis D-amino acid oxidase as insoluble enzyme aggregates. Biotechnol Bioeng 97:454–461

    Article  CAS  PubMed  Google Scholar 

  146. Xu Y, Foong FC (2008) Characterization of a cellulose binding domain from Clostridium cellulovorans endoglucanase-xylanase D and its use as a fusion partner for soluble protein expression in Escherichia coli. J Biotechnol 135:319

    Article  CAS  PubMed  Google Scholar 

  147. Craig SJ, Shu A, Xu Y et al (2007) Chimeric protein for selective cell attachment onto cellulosic substrates. Protein Eng Des Sel 20:235

    Article  CAS  PubMed  Google Scholar 

  148. Xu MQ, Paulus H, Chong S (2000) Fusions to self-splicing inteins for protein purification. Methods Enzymol 326:376–418

    Article  CAS  PubMed  Google Scholar 

  149. Fong BA, Wood DW (2010) Expression and purification of ELP-intein-tagged target proteins in high cell density E. coli fermentation. Microb Cell Fact 9:77

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wang Z, Li N, Wang Y et al (2012) Ubiquitin-intein and SUMO2-intein fusion systems for enhanced protein production and purification. Protein Expr Purif 82:174–178

    Article  CAS  PubMed  Google Scholar 

  151. Einhauer A, Jungbauer A (2001) The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 49:455

    Article  CAS  PubMed  Google Scholar 

  152. Hage DS (1999) Affinity chromatography: a review of clinical applications. Clin Chem 45:593

    Article  CAS  PubMed  Google Scholar 

  153. Munro S, Pelham HR (1986) An Hsp70-like protein in the ER: identity with the 78 Kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46:291–300

    Article  CAS  PubMed  Google Scholar 

  154. Thompson NE, Arthur TM, Burgess RR (2003) Development of an epitope tag for the gentle purification of proteins by immunoaffinity chromatography: application to epitope-tagged green fluorescent protein. Anal Biochem 323:171–179

    Article  CAS  PubMed  Google Scholar 

  155. Kim JS, Raines RT (1993) Ribonuclease S-peptide as a carrier in fusion proteins. Protein Sci 2:348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Banki MR, Feng L, Wood DW (2005) Simple bioseparations using self-cleaving elastin-like polypeptide tags. Nat Methods 2:659

    Article  CAS  PubMed  Google Scholar 

  157. Zhang Y, Gao H, Qi X et al (2021) Efficient molecular biological manipulations with improved strategies based on novel Escherichia coli vectors. J Agric Food Chem 69:5086–5095

    Article  CAS  PubMed  Google Scholar 

  158. Wang S, Lin R, Ren Y et al (2020) Non-chromatographic purification of thermostable endoglucanase from Thermotoga maritima by fusion with a hydrophobic elastin-like polypeptide. Protein Expr Purif 173:105634

    Article  CAS  PubMed  Google Scholar 

  159. Heidari-Japelaghi R, Valizadeh M, Haddad R et al (2020) Fusion to elastin-like polypeptide increases production of bioactive human IFN-γ in tobacco. Transgenic Res 29:381–394

    Article  CAS  PubMed  Google Scholar 

  160. Mullerpatan A, Chandra D, Kane E et al (2020) Purification of proteins using peptide-ELP based affinity precipitation. J Biotechnol 309:59–67

    Article  CAS  PubMed  Google Scholar 

  161. Lim DW, Trabbic-Carlson K, Mackay JA et al (2007) Improved non-chromatographic purification of a recombinant protein by cationic elastin-like polypeptides. Biomacromolecules 8:1417–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. MacEwan SR, Hassouneh W, Chilkoti A (2014) Non-chromatographic purification of recombinant elastin-like polypeptides and their fusions with peptides and proteins from Escherichia coli. J Vis Exp 88:51583

    Google Scholar 

  163. Wu WY, Mee C, Califano F et al (2006) Recombinant protein purification by self-cleaving aggregation tag. Nat Protoc 1:2257

    Article  CAS  PubMed  Google Scholar 

  164. Rigaut G, Shevchenko A, Rutz B et al (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030

    Article  CAS  PubMed  Google Scholar 

  165. Puig O, Caspary F, Rigaut G et al (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229

    Article  CAS  PubMed  Google Scholar 

  166. Gavin AC, Bosche M, Krause R et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141

    Article  CAS  PubMed  Google Scholar 

  167. Forler D, Kocher T, Rode M et al (2003) An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat Biotechnol 21:89

    Article  CAS  PubMed  Google Scholar 

  168. Gingras AC, Aebersold R, Raught B (2005) Advances in protein complex analysis using mass spectrometry. J Physiol 563:11

    Article  CAS  PubMed  Google Scholar 

  169. Rohila JS, Chen M, Chen S et al (2006) Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J 46:1–13

    Article  CAS  PubMed  Google Scholar 

  170. Rubio V, Shen Y, Saijo Y et al (2005) An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant J 41:767–778

    Article  CAS  PubMed  Google Scholar 

  171. Leene J, Stals H, Eeckhout D et al (2007) A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana. Mol Cell Proteomics 6:1226–1238

    Article  PubMed  Google Scholar 

  172. Link AJ, Niu X, Weaver CM et al (2020) Targeted identification of protein interactions in eukaryotic mRNA translation. Proteomics 20:e1900177

    Article  PubMed  Google Scholar 

  173. García-León M, Iniesto E, Rubio V (2018) Tandem affinity purification of protein complexes from Arabidopsis cell cultures. Methods Mol Biol 1794:297–309

    Article  PubMed  Google Scholar 

  174. Lehmann R, Meyer J, Schuemann M et al (2009) A novel S3S-TAP-tag for the isolation of T cell interaction partners of adhesion and degranulation promoting adaptor protein (ADAP). Proteomics 9:5288

    Article  CAS  PubMed  Google Scholar 

  175. Gloeckner CJ, Boldt K, Schumacher A et al (2009) Tandem affinity purification of protein complexes from mammalian cells by the Strep/FLAG (SF)-TAP tag. Methods Mol Biol 564:359–372

    Article  CAS  PubMed  Google Scholar 

  176. Tsai A, Carstens RP (2006) An optimized protocol for protein purification in cultured mammalian cells using a tandem affinity purification approach. Nat Protoc 1:2820–2827

    Article  CAS  PubMed  Google Scholar 

  177. Leene J, Witters E, Inze D et al (2008) Boosting tandem affinity purification of plant protein complexes. Trends Plant Sci 13:517–520

    Article  PubMed  Google Scholar 

  178. Burckstummer T, Bennett KL, Preradovic A et al (2006) An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 3:1013

    Article  PubMed  Google Scholar 

  179. Schimanski B, Nguyen TN, Gunzl A (2005) Highly efficient tandem affinity purification of trypanosome protein complexes based on a novel epitope combination. Eukaryot Cell 4:1942–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Stamsås G, Håvarstein L, Straume D (2013) CHiC, a new tandem affinity tag for the protein purification toolbox. J Microbiol Methods 92:59

    Article  PubMed  Google Scholar 

  181. Collins SR, Miller KM, Maas NL et al (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446:806–810

    Article  CAS  PubMed  Google Scholar 

  182. Carnes RM, Kesterson RA, Korf BR et al (2019) Affinity purification of NF1 protein–protein interactors identifies keratins and neurofibromin itself as binding partners. Genes 10:650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Bhojoo U, Biggar KK (2018) Single-step purification of intrinsic protein complexes in Saccharomyces cerevisiae using regenerable calmodulin resin. MethodsX 5:613–619

    Article  PubMed  PubMed Central  Google Scholar 

  184. Amaranto M, Vaccarello P, Correa EME et al (2021) Novel intein-based self-cleaving affinity tag for recombinant protein production in Escherichia coli. J Biotechnol 332:126–134

    Article  CAS  PubMed  Google Scholar 

  185. Zhang M, Zhang Y, Wu B et al (2020) Intein-mediated recombinant expression of monomeric B22Asp desB30 insulin. BMC Biotechnol 20:1–9

    Article  Google Scholar 

  186. Lahiry A, Fan Y, Stimple SD et al (2018) Inteins as tools for tagless and traceless protein purification. J Chem Technol Biotechnol 93:1827–1835

    Article  CAS  Google Scholar 

  187. Krȩzel A, Kopera E, Protas AM et al (2010) Sequence-specific Ni(II)-dependent peptide bond hydrolysis for protein engineering. combinatorial library determination of optimal sequences. J Am Chem Soc 132:3355–3366

    Article  PubMed  Google Scholar 

  188. Dang B, Mravic M, Hu H et al (2019) SNAC-tag for sequence-specific chemical protein cleavage. Nat Methods 16:319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Jin T, Huang M, Jiang J et al (2018) Crystal structure of human NLRP12 PYD domain and implication in homotypic interaction. PLoS One 13:e0190547

    Article  PubMed  PubMed Central  Google Scholar 

  190. Nosaki S, Terada T, Nakamura A et al (2021) Highlighting the potential utility of MBP crystallization chaperone for Arabidopsis BIL1/BZR1 transcription factor-DNA complex. Sci Rep 11:1–9

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding from the Health Research Board (HRB grant RP/2005/212) and Enterprise Ireland (EI grant IP 2008-0530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinéad T. Loughran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Loughran, S.T., Walls, D. (2023). Tagging Recombinant Proteins to Enhance Solubility and Aid Purification. In: Loughran, S.T., Milne, J.J. (eds) Protein Chromatography. Methods in Molecular Biology, vol 2699. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3362-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3362-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3361-8

  • Online ISBN: 978-1-0716-3362-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics