Skip to main content

Long-Range Polymerase Chain Reaction

  • Protocol
  • First Online:
PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2967))

Abstract

Polymerase chain reaction (PCR) is a laboratory technique used to amplify a targeted region of DNA, demarcated by a set of oligonucleotide primers. Long-range PCR is a form of PCR optimized to facilitate the amplification of large fragments. Using the adapted long-range PCR protocol described in this chapter, we were able to generate PCR products of 6.6, 7.2, 13, and 20 kb from human genomic DNA samples. For some of the long PCRs, successful amplification was not possible without the use of PCR enhancers. Thus, we also evaluated the impact of some enhancers on long-range PCR and included the findings as part of this updated chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. In: Methods in enzymology, vol 155. Academic Press, pp 335–350

    Google Scholar 

  2. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239(4839):487–491

    Article  CAS  PubMed  Google Scholar 

  3. Collins F, Galas D (1993) A new five-year plan for the US human genome project. Science 262(5130):43–46

    Article  CAS  PubMed  Google Scholar 

  4. Delidow BC, Lynch JP, Peluso JJ, White BA (1993) Polymerase chain reaction. In: PCR Protocols. Humana Press, Totowa, NJ, pp 1–29

    Google Scholar 

  5. Long S (2022). Digital PCR: methods and applications in infectious diseases. Methods (San Diego, Calif.)

    Google Scholar 

  6. Zhu H, Zhang H, Xu Y, Laššáková S, Korabečná M, Neužil P (2020) PCR past, present and future. BioTechniques 69(4):317–325

    Article  CAS  PubMed  Google Scholar 

  7. Green MR, Sambrook J (2019) Long and accurate polymerase chain reaction (LA PCR). Cold Spring Harb Protoc 2019(3):pdb-prot095158

    Article  Google Scholar 

  8. Barnes WM (1994) PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci U S A 91(6):2216–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao Z, Xie X, Liu W, Huang J, Tan J, Yu H, Zong W, Tang J, Zhao Y, Xue Y, Chu Z (2022) STI PCR: an efficient method for amplification and de novo synthesis of long DNA sequences. Mol Plant 15(4):620–629

    Article  CAS  PubMed  Google Scholar 

  10. Karunanathie H, Kee PS, Ng SF, Kennedy MA, Chua EW (2022) PCR enhancers: types, mechanisms, and applications in long-range PCR. Biochimie 197:130–143

    Article  CAS  PubMed  Google Scholar 

  11. Dieffenbach CW, Lowe TM, Dveksler GS (1993) General concepts for PCR primer design. PCR Methods Appl 3(3):S30–S37

    Article  CAS  PubMed  Google Scholar 

  12. The NCBI handbook [internet] (2013) 2nd edn. Bethesda (MD): National Center for Biotechnology Information (US). Available from: http://www.ncbi.nlm.nih.gov/books/NBK143764/

  13. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC bioinformatics 13(1):1–11

    Article  Google Scholar 

  14. Cone RW, Fairfax MR (1993) Protocol for ultraviolet irradiation of surfaces to reduce PCR contamination. PCR Methods Appl 3(3):S15–S17

    Article  CAS  PubMed  Google Scholar 

  15. Fox JC, Ait-Khaled M, Webster A, Emery VC (1991) Eliminating PCR contamination: is UV irradiation the answer? J Virol Methods 33(3):375–382

    Article  CAS  PubMed  Google Scholar 

  16. Tamariz J, Voynarovska K, Prinz M, Caragine T (2006) The application of ultraviolet irradiation to exogenous sources of DNA in plasticware and water for the amplification of low copy number DNA. J Forensic Sci 51(4):790–794

    Article  CAS  PubMed  Google Scholar 

  17. Stevens AJ, Appleby S, Kennedy MA (2016) Many commercial hot-start polymerases demonstrate activity prior to thermal activation. BioTechniques 61(6):293–296

    Article  PubMed  Google Scholar 

  18. Green MR, Sambrook J (2019) Analysis of DNA by agarose gel electrophoresis. Cold Spring Harb Protoc 2019(1):pdb-top100388

    Article  Google Scholar 

  19. Lee PY, Costumbrado J, Hsu CY, Kim YH (2012) Agarose gel electrophoresis for the separation of DNA fragments. JoVE 62:e3923

    Google Scholar 

  20. Integrated DNA Technologies Inc (2022) My oligos have arrived: Now what? Resuspension, dilution, storage, and other tips. Available from: https://sg.idtdna.com/pages/education/decoded/article/my-oligos-have-arrived-now-what-. Accessed 27 Sept 2022

  21. PCRBiosystems Inc (2022) PCRBIO HS VeriFi™ Polymerase & Mixes. Available from: https://pcrbio.com/row/products/pcr/pcrbio-hs-verifi-polymerase-mixes/. Accessed 27 Sept 2022

  22. Thermo Fisher Scientific Inc (2008) NanoDrop 8000 Spectrophotometer V2.2 User Manual. Available from: https://tools.thermofisher.com/content/sfs/manuals/User-Manual-nd-8000-v2.2-users-manual-8.5-x-11.pdf. Accessed 27 Sept 2022

  23. Cheng S, Chen Y, Monforte JA, Higuchi R, Higuchi R, Van Houten B (1995) Template integrity is essential for PCR amplification of 20- to 30-kb sequences from genomic DNA. PCR Methods Appl 4(5):294–298

    Article  CAS  PubMed  Google Scholar 

  24. Kong N, Ng W, Cai L, Leonardo A, Kelly L, Weimer BC (2014) Integrating the DNA integrity number (DIN) to assess genomic DNA (gDNA) quality control using the Agilent 2200 TapeStation system. Available from: https://www.agilent.com/cs/library/applications/5991-5442EN.pdf. Accessed 27 Sept 2022

  25. Wu J, Cunanan J, Kim L, Kulatunga T, Huang C, Anekella B (2009) SeraCase life sciences: stability of genomic DNA at various storage conditions. Available from: https://www.colorado.edu/ecenter/sites/default/files/attached-files/seracare_stability_of_genomic_dna_at_various_storage_conditions_isber2009.pdf. Accessed 27 Sept 2022

  26. Röder B, Frühwirth K, Vogl C, Wagner M, Rossmanith P (2010) Impact of long-term storage on stability of standard DNA for nucleic acid-based methods. J Clin Microbiol 48(11):4260–4262

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen WC, Kerr R, May A, Ndlovu B, Sobalisa A, Duze ST, Joseph L, Mathew CG, Babb de Villiers C (2018) The integrity and yield of genomic DNA isolated from whole blood following long-term storage at− 30° C. Biopreserv Biobank 16(2):106–113

    Article  CAS  PubMed  Google Scholar 

  28. Thermo Fisher Scientific Inc (2022) Thermal cycler features—6 key considerations. Available from: https://www.thermofisher.com/nz/en/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/pcr-education/pcr-thermal-cyclers/pcr-thermal-cyclers-considerations.html. Accessed 27 Sept 2022

  29. SantaLucia J Jr (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A 95(4):1460–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chua EW, Miller AL, Kennedy MA (2015) Choice of PCR microtube can impact on the success of long-range PCRs. Anal Biochem 477:115–117

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eng Wee Chua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kee, P.S., Karunanathie, H., Maggo, S.D.S., Kennedy, M.A., Chua, E.W. (2023). Long-Range Polymerase Chain Reaction. In: Domingues, L. (eds) PCR. Methods in Molecular Biology, vol 2967. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3358-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3358-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3357-1

  • Online ISBN: 978-1-0716-3358-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics