Skip to main content

Preclinical Mouse Model of Silicosis

  • Protocol
  • First Online:
Inflammation and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2691))

  • 1199 Accesses

Abstract

Silicosis is an untreatable occupational lung disease caused by chronic inhalation of crystalline silica. Cyclical release and reuptake of silica particles by macrophages and airway epithelial cells causes repeated tissue damage, characterized by widespread inflammation and progressive diffuse fibrosis. While inhalation is the main route of entry for silica particles in humans, most preclinical studies administer silica via the intratracheal route. In vivo mouse models of lung disease are valuable tools required to bridge the translational gap between in vitro cell culture and human disease. This chapter describes a mouse model of silicosis which mimics clinical features of human silicosis, as well as methods for intranasal instillation of silica and disease analysis. Lung tissue can be collected for histological assessment of silica particle distribution, inflammation, structural damage, and fibrosis in sections stained with hematoxylin and eosin or Masson’s trichrome. This approach can be extended to other chronic fibrotic lung diseases where inhalation of small damaging particles such as pollutants causes irreversible disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lam M, Mansell A, Tate MD (2022) Another one fights the dust: targeting the NLRP3 inflammasome for the treatment of silicosis. Am J Respir Cell Mol Biol 66:601–611

    Article  CAS  PubMed  Google Scholar 

  2. Hoy RF, Jeebhay MF, Cavalin C et al (2022) Current global perspectives on silicosis—convergence of old and newly emergent hazards. Respirology 27:387–398

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jones CM, Pasricha SS, Heinze SB, MacDonald S (2020) Silicosis in artificial stone workers: spectrum of radiological high-resolution CT chest findings. J Med Imaging Radiat Oncol 64:241–249

    Article  PubMed  Google Scholar 

  4. McDonald JW, Roggli VL (1995) Detection of silica particles in lung tissue by polarizing light microscopy. Arch Pathol Lab Med 119:242–246

    CAS  PubMed  Google Scholar 

  5. Zhao Y, Hao C, Bao L et al (2020) Silica particles disorganize the polarization of pulmonary macrophages in mice. Ecotoxicol Environ Saf 193:110364

    Article  CAS  PubMed  Google Scholar 

  6. Yu Q, Fu G, Lin H et al (2020) Influence of silica particles on mucociliary structure and MUC5B expression in airways of C57BL/6 mice. Exp Lung Res 46:217–225

    Article  CAS  PubMed  Google Scholar 

  7. Adamcakova J, Mokra D (2021) New insights into pathomechanisms and treatment possibilities for lung silicosis. Int J Mol Sci 22:4162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hornung V, Bauernfeind F, Halle A et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Biswas R, Hamilton RF, Holian A (2014) Role of lysosomes in silica-induced inflammasome activation and inflammation in absence of MARCO. J Immunol Res 2014:304180

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hamilton RF Jr, Thakur SA, Holian A (2008) Silica binding and toxicity in alveolar macrophages. Free Radic Biol Med 44:1246–1258

    Article  CAS  PubMed  Google Scholar 

  11. Jagirdar J, Begin R, Dufresne A et al (1996) Transforming growth factor-β (TGF-β) in silicosis. Am J Respir Crit Care Med 154:1076–1081

    Article  CAS  PubMed  Google Scholar 

  12. Doerner AM, Zuraw BL (2009) TGF-β1-induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids. Respir Res 10:100

    Article  PubMed  PubMed Central  Google Scholar 

  13. Peeters PM, Perkins TN, Wouters EFM et al (2013) Silica induces NLRP3 inflammasome activation in human lung epithelial cells. Part Fibre Toxicol 10:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song M, Wang J, Sun Y et al (2022) Tetrandrine alleviates silicosis by inhibiting canonical and non-canonical NLRP3 inflammasome activation in lung macrophages. Acta Pharmacol Sin 43:1274–1284

    Article  CAS  PubMed  Google Scholar 

  15. Chen S, Han B, Geng X et al (2022) Microcrystalline silica particles induce inflammatory response via pyroptosis in primary human respiratory epithelial cells. Environ Toxicol 37:385–400

    Article  CAS  PubMed  Google Scholar 

  16. Ong JDH, Mansell A, Tate MD (2017) Hero turned villain: NLRP3 inflammasome-induced inflammation during influenza A virus infection. J Leukoc Biol 101:863–874

    Article  CAS  PubMed  Google Scholar 

  17. Vince JE, Silke J (2016) The intersection of cell death and inflammasome activation. Cell Mol Life Sci 73:2349–2367

    Article  CAS  PubMed  Google Scholar 

  18. Song M, Wang J, Sun Y et al (2022) Inhibition of gasdermin D-dependent pyroptosis attenuates the progression of silica-induced pulmonary inflammation and fibrosis. Acta Pharm Sin B 12:1213–1224

    Article  CAS  PubMed  Google Scholar 

  19. Mayeux JM, Kono DH, Pollard KM (2019) Development of experimental silicosis in inbred and outbred mice depends on instillation volume. Sci Rep 9:1–10

    Article  CAS  Google Scholar 

  20. Gulumian M, Borm PJA, Vallyathan V et al (2006) Mechanistically identified suitable biomarkers of exposure, effect, and susceptibility for silicosis and coal-worker’s pneumoconiosis: a comprehensive review. J Toxicol Environ Health 9:357–395

    Article  CAS  Google Scholar 

  21. Cassel SL, Eisenbarth SC, Iyer SS et al (2008) The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA 105:9035–9040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. di Giuseppe M, Gambelli F, Hoyle GW et al (2009) Systemic inhibition of NF-ÎşB activation protects from silicosis. PLoS One 4:e5689

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sun J, Li Q, Lian X et al (2019) MicroRNA-29b mediates lung mesenchymal-epithelial transition and prevents lung fibrosis in the silicosis model. Mol Ther Nucleic Acids 14:20–31

    Article  PubMed  Google Scholar 

  24. Beamer CA, Migliaccio CT, Jessop F et al (2010) Innate immune processes are sufficient for driving silicosis in mice. J Leukoc Biol 88:547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ortiz LA, Lasky J, Gozal E et al (2001) Tumor necrosis factor receptor deficiency alters matrix metalloproteinase 13/tissue inhibitor of metalloproteinase 1 expression in murine silicosis. Am J Respir Crit Care Med 163:244–252

    Article  CAS  PubMed  Google Scholar 

  26. Mansell A, Tate MD (2018) In vivo infection model of severe influenza A virus. Methods Mol Biol 1725:91–99

    Article  CAS  PubMed  Google Scholar 

  27. Borges VM, Lopes MF, Falcão H et al (2002) Apoptosis underlies immunopathogenic mechanisms in acute silicosis. Am J Respir Cell Mol Biol 27:78–84

    Article  CAS  PubMed  Google Scholar 

  28. Davis GS, Leslie KO, Hemenway DR (1998) Silicosis in mice: effects of dose, time, and genetic strain. J Environ Pathol Toxicol Oncol 17:81–97

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle D. Tate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lam, M., Mansell, A., Tate, M.D. (2023). Preclinical Mouse Model of Silicosis. In: Jenkins, B.J. (eds) Inflammation and Cancer. Methods in Molecular Biology, vol 2691. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3331-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3331-1_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3330-4

  • Online ISBN: 978-1-0716-3331-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics