Skip to main content

Flow Cytometry Identification of Cell Compartments in the Murine Brain

  • Protocol
  • First Online:
Inflammation and Cancer

Abstract

Glioma can be modelled in the murine brain through the induction of genetically engineered mouse models or intracranial transplantation. Gliomas (oligodendroglioma and astrocytoma) are thought to arise from neuronal and glial progenitor populations in the brain and are poorly infiltrated by immune cells. An improved understanding of oligodendrocytes, astrocytes, and the immune environment throughout tumor development will enhance the analysis and development of brain cancer models. Here, we describe the isolation and analysis of murine brain cell types using a combination of flow cytometry and quantitative RT-PCR strategies to analyze these individual cell populations in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353:811–822

    Article  CAS  PubMed  Google Scholar 

  2. Louis DN, Perry A, Wesseling P et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncology 23:1231–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barthel FP, Johnson KC, Varn FS et al (2019) Longitudinal molecular trajectories of diffuse glioma in adults. Nature 576:112–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mweempwa A, Rosenthal MA, Dimou J et al (2021) Perioperative clinical trials for glioma: raising the bar. J Clin Neurosci 89:144–150

    Article  PubMed  Google Scholar 

  5. Davis M (2016) Glioblastoma: overview of disease and treatment. Clin J Oncol Nurs 20:S2–S8

    Article  PubMed  PubMed Central  Google Scholar 

  6. Venkatesh HS, Morishita W, Geraghty AC et al (2019) Electrical and synaptic integration of glioma into neural circuits. Nature 573:539–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Venkatesh HS, Johung TB, Caretti V et al (2015) Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161:803–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alcantara Llaguno S, Chen J, Kwon C-H et al (2009) Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15:45–56

    Article  PubMed  PubMed Central  Google Scholar 

  9. Holland EC, Celestino J, Dai C et al (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25:55–57

    Article  CAS  PubMed  Google Scholar 

  10. Zheng H, Ying H, Yan H et al (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455:1129–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Z, Sun D, Chen Y-J et al (2020) Cell lineage-based stratification for glioblastoma. Cancer Cell 38:366–379.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seyfried TN, el-Abbadi M, Roy ML (1992) Ganglioside distribution in murine neural tumors. Mol Chem Neuropathol 17:147–167

    Article  CAS  PubMed  Google Scholar 

  13. Pombo Antunes AR, Scheyltjens I, Duerinck J et al (2020) Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies. elife 9:e52176

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gyoneva S, Hosur R, Gosselin D et al (2019) Cx3cr1-deficient microglia exhibit a premature aging transcriptome. Life Sci Alliance 2:e201900453

    Article  PubMed  PubMed Central  Google Scholar 

  15. Swartzlander DB, Propson NE, Roy ER et al (2018) Concurrent cell type-specific isolation and profiling of mouse brains in inflammation and Alzheimer’s disease. JCI Insight 3:e121109

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sim FJ, McClain CR, Schanz SJ et al (2011) CD140a identifies a population of highly myelinogenic, migration-competent and efficiently engrafting human oligodendrocyte progenitor cells. Nat Biotechnol 29:934–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abbott RC, Verdon DJ, Gracey FM et al (2021) Novel high-affinity EGFRvIII-specific chimeric antigen receptor T cells effectively eliminate human glioblastoma. Clin Transl Immunol 10:e1283

    Article  CAS  Google Scholar 

  18. Best SA, De Souza DP, Kersbergen A et al (2018) Synergy between the KEAP1/NRF2 and PI3K pathways drives non-small-cell lung cancer with an altered immune microenvironment. Cell Metab 27:935–943.e4

    Article  CAS  PubMed  Google Scholar 

  19. Inui M, Ishida Y, Kimura A et al (2011) Protective roles of CX3CR1-mediated signals in toxin A-induced enteritis through the induction of heme oxygenase-1 expression. J Immunol 186:423–431

    Article  CAS  PubMed  Google Scholar 

  20. Herring CA, Simmons RK, Freytag S et al (2022) Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell 185:4428–4447.e28

    Article  CAS  PubMed  Google Scholar 

  21. Zhang S, Rasai A, Wang Y et al (2018) The stem cell factor Sox2 is a positive timer of oligodendrocyte development in the postnatal murine spinal cord. Mol Neurobiol 55:9001–9015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Monard for running the WEHI flow cytometry core and R.K. Simmons for their expert advice. The intracranial procedure is performed by highly trained staff following protocols approved by the WEHI Animal Ethics Committee (2022.004). S.A.B. is supported by a Victorian Cancer Agency Mid-Career Research Fellowship (MCRF22003), Z.M. is supported by the Greg Lange Memorial Postdoctoral Fellowship, S.F. is supported by a National Health and Medical Research Council of Australia (NHMRC) Ideas Grant (1184421), and M.R.J. is supported by a NHMRC Investigator Grant (APP1172858). This work was made possible and financially supported in part through the authors’ membership of the Brain Cancer Centre, support from Carrie’s Beanies 4 Brain Cancer, a Priority-Driven Collaborative Cancer Research Scheme Grant funded by Cancer Australia to S.A.B. (2003127), and through Victorian State Government Operational Infrastructure Support and Australian Government NHMRC Independent Research Institutes Infrastructure Support Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah A. Best .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moffet, J.J.D. et al. (2023). Flow Cytometry Identification of Cell Compartments in the Murine Brain. In: Jenkins, B.J. (eds) Inflammation and Cancer. Methods in Molecular Biology, vol 2691. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3331-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3331-1_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3330-4

  • Online ISBN: 978-1-0716-3331-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics