Skip to main content

Co-immunoprecipitation-Based Identification of Effector–Host Protein Interactions from Pathogen-Infected Plant Tissue

  • Protocol
  • First Online:
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2690))

Abstract

Protein–protein interactions play an essential role in host–pathogen interactions. Phytopathogens secrete a cocktail of effector proteins to suppress plant immunity and reprogram host cell metabolism in their favor. Identification and characterization of effectors and their target protein complexes by co-immunoprecipitation can help to gain a deeper understanding of the functions of individual effectors during pathogenicity and can also provide new insights into the wiring of plant signaling pathways or metabolic complexes. Here we describe a detailed protocol to perform co-immunoprecipitation of effector–target protein complexes from plant extracts with an example of the Ustilago maydis/maize pathosystem for which we also provide a fungal protoplast transformation and maize seedling infection protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avila JR, Lee JS, Torii KU (2015) Co-immunoprecipitation of membrane-bound receptors. The Arabidopsis Book 2015(13):e0180

    Article  Google Scholar 

  2. Sciuto MR, Warnken U, Schnolzer M et al (2018) Two-step coimmunoprecipitation (TIP) enables efficient and highly selective isolation of native protein complexes. Mol Cell Proteomics: MCP 17(5):993–1009. https://doi.org/10.1074/mcp.O116.065920

    Article  CAS  PubMed  Google Scholar 

  3. Lin J-S, Lai E-M (2017) Protein–protein interactions: co-immunoprecipitation. In: Journet L, Cascales E (eds) Bacterial protein secretion systems: methods and protocols. Springer, New York, pp 211–219. https://doi.org/10.1007/978-1-4939-7033-9_17

    Chapter  Google Scholar 

  4. Iqbal H, Akins DR, Kenedy MR (2018) Co-immunoprecipitation for identifying protein-protein interactions in Borrelia burgdorferi. In: Pal U, Buyuktanir O (eds) Borrelia burgdorferi: methods and protocols. Springer, New York, pp 47–55. https://doi.org/10.1007/978-1-4939-7383-5_4

    Chapter  Google Scholar 

  5. Nicod C, Banaei-Esfahani A, Collins BC (2017) Elucidation of host-pathogen protein-protein interactions to uncover mechanisms of host cell rewiring. Curr Opin Microbiol 39:7–15. https://doi.org/10.1016/j.mib.2017.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lo Presti L, Lanver D, Schweizer G et al (2015) Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66:513–545. https://doi.org/10.1146/annurev-arplant-043014-114623

    Article  CAS  PubMed  Google Scholar 

  7. Newman TE, Derbyshire MC (2020) The evolutionary and molecular features of broad host-range necrotrophy in plant pathogenic fungi. Front Plant Sci 11:591733. https://doi.org/10.3389/fpls.2020.591733

    Article  PubMed  PubMed Central  Google Scholar 

  8. Navarrete F, Grujic N, Stirnberg A et al (2021) The Pleiades are a cluster of fungal effectors that inhibit host defenses. PLoS Pathog 17(6):e1009641. https://doi.org/10.1371/journal.ppat.1009641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Uhse S, Djamei A (2018) Effectors of plant-colonizing fungi and beyond. PLoS Pathog 14(6):e1006992. https://doi.org/10.1371/journal.ppat.1006992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mueller AN, Ziemann S, Treitschke S et al (2013) Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathog 9(2):e1003177. https://doi.org/10.1371/journal.ppat.1003177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saado I, Chia K-S, Betz R et al (2022) Effector-mediated relocalization of a maize lipoxygenase protein triggers susceptibility to Ustilago maydis. Plant Cell. https://doi.org/10.1093/plcell/koac105

  12. Okmen B, Doehlemann G (2014) Inside plant: biotrophic strategies to modulate host immunity and metabolism. Curr Opin Plant Biol 20:19–25. https://doi.org/10.1016/j.pbi.2014.03.011

    Article  CAS  PubMed  Google Scholar 

  13. Lanver D, Muller AN, Happel P et al (2018) The biotrophic development of Ustilago maydis studied by RNA-Seq analysis. Plant Cell 30(2):300–323. https://doi.org/10.1105/tpc.17.00764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zuo W, Depotter JRL, Gupta DK et al (2021) Cross-species analysis between the maize smut fungi Ustilago maydis and Sporisorium reilianum highlights the role of transcriptional change of effector orthologs for virulence and disease. New Phytol 232(2):719–733. https://doi.org/10.1111/nph.17625

    Article  CAS  PubMed  Google Scholar 

  15. Djamei A, Schipper K, Rabe F et al (2011) Metabolic priming by a secreted fungal effector. Nature 478(7369):395–398. https://doi.org/10.1038/nature10454

    Article  CAS  PubMed  Google Scholar 

  16. Lo Presti L, Zechmann B, Kumlehn J et al (2017) An assay for entry of secreted fungal effectors into plant cells. New Phytol 213(2):956–964. https://doi.org/10.1111/nph.14188

    Article  CAS  PubMed  Google Scholar 

  17. Navarrete F, Gallei M, Kornienko AE et al (2022) TOPLESS promotes plant immunity by repressing auxin signaling and is targeted by the fungal effector Naked1. Plant Commun 3(2):100269. https://doi.org/10.1016/j.xplc.2021.100269

    Article  CAS  PubMed  Google Scholar 

  18. Keon JPR, White GA, Hargreaves JA (1991) Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis. Curr Genet 19(6):475–481. https://doi.org/10.1007/bf00312739

    Article  CAS  PubMed  Google Scholar 

  19. Khan M, Djamei A (2022) Performing infection assays of Sporisorium reilianum f. sp. Zeae in Maize. Methods Mol Biol 2494:291–298. https://doi.org/10.1007/978-1-0716-2297-1_20

    Article  PubMed  Google Scholar 

  20. Bölker M, Genin S, Lehmler C et al (1995) Genetic regulation of mating and dimorphism in Ustilago maydis. Can J Bot 73(S1):320–325. https://doi.org/10.1139/b95-262

    Article  Google Scholar 

  21. Redkar A, Doehlemann G (2016) Ustilago maydis virulence assays in maize. Bio Protoc 6(6):e1760. https://doi.org/10.21769/BioProtoc.1760

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Natalia De Sousa Teixeira E. Silva for providing the U. maydis cells for microscopy and Dr. Aladar Pettkó-Szandtner for helpful comments on the co-IP protocol. Our research is supported by funding from the German Research Foundation (DFG) under Germany’s Excellence Strategy – EXC-2070 – 390732324 (PhenoRob) and DJ 64/5-1 and the Austrian Science Fund (FWF) (I 3033-B22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoona Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Khan, M., Djamei, A. (2023). Co-immunoprecipitation-Based Identification of Effector–Host Protein Interactions from Pathogen-Infected Plant Tissue. In: Mukhtar, S. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 2690. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3327-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3327-4_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3326-7

  • Online ISBN: 978-1-0716-3327-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics