Skip to main content

Preparation and Utilization of a Versatile GFP-Protein Trap-Like System for Protein Complex Immunoprecipitation in Plants

  • Protocol
  • First Online:
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2690))

  • 1367 Accesses

Abstract

Protein complex immunoprecipitation (co-IP) is an in vitro technique used to study protein–protein interaction between two or more proteins. This method relies on affinity purification of recombinant epitope-tagged proteins followed by western blotting detection using tag-specific antibodies for the confirmation of positive interaction. The traditional co-IP method relies on the use of porous beaded support with immobilized antibodies to precipitate protein complexes. However, this method is time-consuming, labor-intensive, and provides lower reproducibility and yield of protein complexes. Here, we describe the implementation of magnetic beads and high-affinity anti-green fluorescent protein (GFP) antibodies to develop an in vitro GFP-protein trap-like system. This highly reproducible system utilizes a combination of small sample size, versatile lysis buffer, and lower amounts of magnetic beads to obtain protein complexes and aggregates that are compatible with functional assays, Western blotting, and mass spectrometry. In addition to protein–protein interactions, this versatile method can be employed to study protein–nucleic acid interactions. This protocol also highlights troubleshooting and includes recommendations to optimize its application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wessling R, Epple P, Altmann S et al (2014) Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16(3):364–375. https://doi.org/10.1016/j.chom.2014.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smakowska-Luzan E, Mott GA, Parys K et al (2018) An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 553(7688):342–346. https://doi.org/10.1038/nature25184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mukhtar MS, Carvunis AR, Dreze M et al (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333(6042):596–601. https://doi.org/10.1126/science.1203659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mott GA, Smakowska-Luzan E, Pasha A et al (2019) Map of physical interactions between extracellular domains of Arabidopsis leucine-rich repeat receptor kinases. Sci Data 6:190025. https://doi.org/10.1038/sdata.2019.25

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mishra B, Sun Y, Howton TC et al (2018) Dynamic modeling of transcriptional gene regulatory network uncovers distinct pathways during the onset of Arabidopsis leaf senescence. NPJ Syst Biol Appl 4:35. https://doi.org/10.1038/s41540-018-0071-2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mishra B, Sun Y, Ahmed H et al (2017) Global temporal dynamic landscape of pathogen-mediated subversion of Arabidopsis innate immunity. Sci Rep 7(1):7849. https://doi.org/10.1038/s41598-017-08073-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mishra B, Kumar N, Shahid Mukhtar M (2022) A rice protein interaction network reveals high centrality nodes and candidate pathogen effector targets. Comput Struct Biotechnol J 20:2001–2012. https://doi.org/10.1016/j.csbj.2022.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mishra B, Kumar N, Mukhtar MS (2021) Network biology to uncover functional and structural properties of the plant immune system. Curr Opin Plant Biol 62:102057. https://doi.org/10.1016/j.pbi.2021.102057

    Article  CAS  PubMed  Google Scholar 

  9. Mishra B, Kumar N, Mukhtar MS (2019) Systems biology and machine learning in plant-pathogen interactions. Mol Plant Microbe Interact 32(1):45–55. https://doi.org/10.1094/MPMI-08-18-0221-FI

    Article  CAS  PubMed  Google Scholar 

  10. McCormack ME, Lopez JA, Crocker TH et al (2016) Making the right connections: network biology and plant immune system dynamics. Current Plant Biology 5:2–12

    Article  Google Scholar 

  11. Lopez J, Mukhtar MS (2017) Mapping protein-protein interaction using high-throughput yeast 2-hybrid. Methods Mol Biol 1610:217–230. https://doi.org/10.1007/978-1-4939-7003-2_14

    Article  CAS  PubMed  Google Scholar 

  12. Kumar N, Mishra B, Mukhtar MS (2022) A pipeline of integrating transcriptome and interactome to elucidate central nodes in host-pathogens interactions. STAR Protoc 3(3):101608. https://doi.org/10.1016/j.xpro.2022.101608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar N, Mishra B, Mehmood A et al (2020) Integrative network biology framework elucidates molecular mechanisms of SARS-CoV-2 pathogenesis. iScience 23(9):101526. https://doi.org/10.1016/j.isci.2020.101526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klopffleisch K, Phan N, Augustin K et al (2011) Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol Syst Biol 7:532. https://doi.org/10.1038/msb.2011.66

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gonzalez-Fuente M, Carrere S, Monachello D et al (2020) EffectorK, a comprehensive resource to mine for Ralstonia, Xanthomonas, and other published effector interactors in the Arabidopsis proteome. Mol Plant Pathol 21(10):1257–1270. https://doi.org/10.1111/mpp.12965

    Article  PubMed  PubMed Central  Google Scholar 

  16. Garbutt CC, Bangalore PV, Kannar P et al (2014) Getting to the edge: protein dynamical networks as a new frontier in plant-microbe interactions. Front Plant Sci 5:312. https://doi.org/10.3389/fpls.2014.00312

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arabidopsis Interactome Mapping C (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333(6042):601–607. https://doi.org/10.1126/science.1203877

    Article  CAS  Google Scholar 

  18. Ahmed H, Howton TC, Sun Y et al (2018) Network biology discovers pathogen contact points in host protein-protein interactomes. Nat Commun 9(1):2312. https://doi.org/10.1038/s41467-018-04632-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu X, Merchant A, Rockett KS et al (2015) Characterization of Arabidopsis thaliana GCN2 kinase roles in seed germination and plant development. Plant Signal Behav 10(4):e992264. https://doi.org/10.4161/15592324.2014.992264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moreno AA, Mukhtar MS, Blanco F et al (2012) IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLoS One 7(2):e31944. https://doi.org/10.1371/journal.pone.0031944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pajerowska-Mukhtar KM, Wang W, Tada Y et al (2012) The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition. Curr Biol 22(2):103–112. https://doi.org/10.1016/j.cub.2011.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ehlert A, Weltmeier F, Wang X et al (2006) Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J 46(5):890–900. https://doi.org/10.1111/j.1365-313X.2006.02731.x

    Article  CAS  PubMed  Google Scholar 

  23. Afrin T, Seok M, Terry BC et al (2020) Probing natural variation of IRE1 expression and endoplasmic reticulum stress responses in Arabidopsis accessions. Sci Rep 10(1):19154. https://doi.org/10.1038/s41598-020-76114-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Verchot J, Pajerowska-Mukhtar KM (2021) UPR signaling at the nexus of plant viral, bacterial, and fungal defenses. Curr Opin Virol 47:9–17. https://doi.org/10.1016/j.coviro.2020.11.001

    Article  CAS  PubMed  Google Scholar 

  25. Munoz A, Castellano MM (2018) Coimmunoprecipitation of interacting proteins in plants. Methods Mol Biol 1794:279–287. https://doi.org/10.1007/978-1-4939-7871-7_19

    Article  CAS  PubMed  Google Scholar 

  26. Diwan D, Liu X, Andrews CF et al (2021) A quantitative Arabidopsis IRE1a Ribonuclease-dependent in vitro mRNA cleavage assay for functional studies of substrate splicing and decay activities. Front Plant Sci 12:707378. https://doi.org/10.3389/fpls.2021.707378

    Article  PubMed  PubMed Central  Google Scholar 

  27. Afrin T, Costello CN, Monella AN et al (2022) The interplay of GTP-binding protein AGB1 with ER stress sensors IRE1a and IRE1b modulates Arabidopsis unfolded protein response and bacterial immunity. Plant Signal Behav 17(1):2018857. https://doi.org/10.1080/15592324.2021.2018857

    Article  CAS  PubMed  Google Scholar 

  28. Liu X, Sun Y, Korner CJ et al (2015) Bacterial leaf infiltration assay for fine characterization of plant defense responses using the Arabidopsis thaliana-Pseudomonas syringae Pathosystem. J Vis Exp 104. https://doi.org/10.3791/53364

  29. Kosmacz M, Gorka M, Schmidt S et al (2019) Protein and metabolite composition of Arabidopsis stress granules. New Phytol 222(3):1420–1433. https://doi.org/10.1111/nph.15690

    Article  CAS  PubMed  Google Scholar 

  30. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133(2):462–469. https://doi.org/10.1104/pp.103.027979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakagawa T, Kurose T, Hino T et al (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104(1):34–41. https://doi.org/10.1263/jbb.104.34

    Article  CAS  PubMed  Google Scholar 

  32. Garabagi F, Gilbert E, Loos A et al (2012) Utility of the P19 suppressor of gene-silencing protein for production of therapeutic antibodies in Nicotiana expression hosts. Plant Biotechnol J 10(9):1118–1128. https://doi.org/10.1111/j.1467-7652.2012.00742.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Science Foundation (IOS-2038872).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolina M. Pajerowska-Mukhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Diwan, D., Pajerowska-Mukhtar, K.M. (2023). Preparation and Utilization of a Versatile GFP-Protein Trap-Like System for Protein Complex Immunoprecipitation in Plants. In: Mukhtar, S. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 2690. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3327-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3327-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3326-7

  • Online ISBN: 978-1-0716-3327-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics