Skip to main content

Detection of Protein–Protein Interactions Utilizing the Split-Ubiquitin Membrane-Based Yeast Two-Hybrid System

  • Protocol
  • First Online:
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2690))

  • 1439 Accesses

Abstract

Identifying the interactors of a protein is a key step in understanding its possible cellular function(s). Among the various methods that can be used to study protein-protein interactions (PPIs), the yeast two-hybrid (Y2H) assay is one of the most standardized, sensitive, and cost-effective in vivo methods available. The most commonly used GAL4-based Y2H system utilizes the yeast transcription factor GAL4 to detect interactions between soluble proteins. By virtue of involving a transcription factor, the protein–protein interactions occur in the nucleus. The split-ubiquitin Y2H system offers an alternative to the traditional GAL4-based Y2H system and takes advantage of the reconstitution of split-ubiquitin in the cytosol to identify interactions between two proteins. Moreover, new membranous and soluble interacting partner(s) can be identified by screening a target protein against proteins produced from a cDNA library using this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berggard T, Linse S, James P (2007) Methods for the detection and analysis of protein-protein interactions. Proteomics 7(16):2833–2842

    Article  PubMed  Google Scholar 

  2. von Mering C, Krause R, Snel B et al (2002) Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417(6887):399–403

    Article  Google Scholar 

  3. Yanagida M (2002) Functional proteomics; current achievements. J Chromatogr B Analyt Technol Biomed Life Sci 771(1–2):89–106

    Article  CAS  PubMed  Google Scholar 

  4. Phizicky EM, Fields S (1995) Protein-protein interactions: methods for detection and analysis. Microbiol Rev 59(1):94–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stoevesandt O, Taussig MJ, He M (2009) Protein microarrays: high-throughput tools for proteomics. Expert Rev Proteomics 6(2):145–157

    Article  CAS  PubMed  Google Scholar 

  6. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340(6230):245–246

    Article  CAS  PubMed  Google Scholar 

  7. Alifano P, Fani R, Lio P et al (1996) Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiol Rev 60(1):44–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gedvilaite A, Sasnauskas K (1994) Control of the expression of the ADE2 gene of the yeast Saccharomyces cerevisiae. Curr Genet 25(6):475–479

    Article  CAS  PubMed  Google Scholar 

  9. Gong W, Shen YP, Ma LG et al (2004) Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes. Plant Physiol 135(2):773–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rolland T, Tasan M, Charloteaux B et al (2014) A proteome-scale map of the human interactome network. Cell 159(5):1212–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu H, Braun P, Yildirim MA, Lemmens I et al (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dutta S, Teresinski HJ, Smith MD (2014) A split-ubiquitin yeast two-hybrid screen to examine the substrate specificity of atToc159 and atToc132, two Arabidopsis chloroplast preprotein import receptors. PLoS One 9(4):e95026

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pandey S, Assmann SM (2004) The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16(6):1616–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hershko A (2005) The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ 12(9):1191–1197

    Article  CAS  PubMed  Google Scholar 

  15. Johnsson N, Varshavsky A (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci U S A 91(22):10340–10344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stagljar I, Korostensky C, Johnsson N et al (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci U S A 95(9):5187–5192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thaminy S, Auerbach D, Arnoldo A et al (2003) Identification of novel ErbB3-interacting factors using the split-ubiquitin membrane yeast two-hybrid system. Genome Res 13(7):1744–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sambrook J, Russell D (2001) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  19. Sambrook J, Russell DW (2006) Preparation of plasmid DNA by alkaline lysis with SDS: Minipreparation. CSH Protoc 2006(1)

    Google Scholar 

  20. Sambrook J, Russell DW (2006) Preparation and transformation of Competent E. coli using calcium chloride. CSH Protoc 2006(1)

    Google Scholar 

  21. Breeden L, Nasmyth K (1985) Regulation of the yeast HO gene. Cold Spring Harb Symp Quant Biol 50:643–650

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dutta, S., Smith, M.D. (2023). Detection of Protein–Protein Interactions Utilizing the Split-Ubiquitin Membrane-Based Yeast Two-Hybrid System. In: Mukhtar, S. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 2690. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3327-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3327-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3326-7

  • Online ISBN: 978-1-0716-3327-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics