Skip to main content

Analyzing Protein–Protein Interactions Using the Split-Ubiquitin System

  • Protocol
  • First Online:
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2690))

Abstract

The split-ubiquitin technology was developed over 20 years ago as an alternative to Gal4-based, yeast-two-hybrid methods to identify interacting protein partners. With the introduction of mating-based methods for split-ubiquitin screens, the approach has gained broad popularity because of its exceptionally high transformation efficiency, utility in working with full-length membrane proteins, and positive selection with little interference from spurious interactions. Recent advances now extend these split-ubiquitin methods to the analysis of interactions between otherwise soluble proteins and tripartite protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xing S, Wallmeroth N, Berendzen KW, Grefen C (2016) Techniques for the analysis of protein-protein interactions in vivo. Plant Physiol 171:727–758

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Vikis HG, Guan KL (2004) Glutathione-S-transferase-fusion based assays for studying protein-protein interactions. Methods Mol Biol 261:175–186

    CAS  PubMed  Google Scholar 

  3. Louche A, Salcedo SP, Bigot S (2017) Protein-protein interactions: pull-down assays. Methods Mol Biol 1615:247–255

    Article  PubMed  Google Scholar 

  4. Tang Z, Takahashi Y (2018) Analysis of protein-protein interaction by co-IP in human cells. Methods Mol Biol 1794:289–296

    Article  CAS  PubMed  Google Scholar 

  5. Maccarrone G, Bonfiglio JJ, Silberstein S, Turck CW, Martins-de-Souza D (2017) Characterization of a protein interactome by co-immunoprecipitation and shotgun mass spectrometry. Methods Mol Biol 1546:223–234

    Article  CAS  PubMed  Google Scholar 

  6. Jamge S, Angenent GC, Bemer M (2018) Identification of in planta protein-protein interactions using IP-MS. Methods Mol Biol 1675:315–329

    Article  CAS  PubMed  Google Scholar 

  7. Fujiwara M, Uemura T, Ebine K et al (2014) Interactomics of Qa-SNARE in arabidopsis thaliana. Plant and Cell Physiology 55:781–789

    Article  CAS  PubMed  Google Scholar 

  8. Grefen C, Blatt MR (2012) A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). Biotechniques 53:311–314

    Article  CAS  PubMed  Google Scholar 

  9. Walter M, Chaban C, Schutze K et al (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant Journal 40:428–438

    Article  CAS  Google Scholar 

  10. Mehlhorn DG, Wallmeroth N, Berendzen KW, Grefen C (2018) 2in1 vectors improve in planta BiFC and FRET analyses. Methods Mol Biol 1691:139–158

    Article  CAS  PubMed  Google Scholar 

  11. Lerner E, Barth A, Hendrix J et al (2021) FRET-based dynamic structural biology: challenges, perspectives and an appeal for open-science practices. Elife 10

    Google Scholar 

  12. Hecker A, Wallmeroth N, Peter S, Blatt MR, Harter K, Grefen C (2015) Binary 2in1 vectors improve in planta (co-) localisation and dynamic protein interaction studies. Plant Physiology 168:776–787

    Article  PubMed  PubMed Central  Google Scholar 

  13. McAlister-Henn L, Gibson N, Panisko E (1999) Applications of the yeast two-hybrid system. Methods 19:330–337

    Article  CAS  PubMed  Google Scholar 

  14. Buckholz RG, Simmons CA, Stuart JM, Weiner MP (1999) Automation of yeast two-hybrid screening. J. Mol. Microbiol. Biotechnol. 1:135–140

    CAS  PubMed  Google Scholar 

  15. Grefen C, Obrdlik P, Harter K (2009) The determination of protein-protein interactions by the mating-based split-ubiquitin system (mbSUS). Methods Mol Biol 479:217–233

    Article  CAS  PubMed  Google Scholar 

  16. Horaruang W, Zhang B (2017) Mating based split-ubiquitin assay for detection of protein interactions. Bio Protoc 7:e2258

    Article  PubMed  PubMed Central  Google Scholar 

  17. Baena G, Xia L, Waghmare S, Karnik RA (2022) SNARE SYP132 mediates divergent traffic of plasma membrane H+-ATPase AHA1 and antimicrobial PR1 during pathogenesis. Plant Physiol

    Google Scholar 

  18. Karnik R, Zhang B, Waghmare S et al (2015) Binding of SEC11 indicates its role in SNARE recycling after vesicle fusion and identifies two pathways for vesicular traffic to the plasma membrane. Plant Cell 27:675–694

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang B, Karnik R, Alvim J, Donald N, Blatt MR (2019) Dual sites for SEC11 on the SNARE SYP121 implicate a binding exchange during secretory traffic. Plant Physiol 180:228–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang B, Karnik R, Waghmare S, Donald N, Blatt MR (2017) VAMP721 conformations unmask an extended motif for K+ channel binding and gating control. Plant Physiol 173:536–551

    Article  CAS  PubMed  Google Scholar 

  21. Zhang B, Karnik R, Wang Y et al (2015) The arabidopsis R-SNARE VAMP721 interacts with KAT1 and KC1 K+ channels to moderate K+ current at the plasma membrane. Plant Cell 27:1697–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Waghmare S, Lefoulon C, Zhang B et al (2019) K(+) channel-SEC11 binding exchange regulates SNARE assembly for secretory traffic. Plant Physiol 181:1096–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grefen C, Lalonde S, Obrdlik P (2007) Split-ubiquitin system for identifying protein-protein interactions in membrane and full-length proteins. Current Protocols Neurosci. 5:5–27

    Google Scholar 

  24. Grefen C, Obrdlik P, Harter K (2009) The determination of protein-protein interactions byt the mating-based split-ubiquitin system (mbSUS). Methods in Molecular Biology 479:1–17

    Google Scholar 

  25. Zhang B, Karnik R, Donald N, Blatt MR (2018) A GPI signal peptide-anchored split-ubiquitin (GPS) system for detecting soluble bait protein interactions at the membrane. Plant Physiol 178:13–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang B, Xia L, Zhang Y, Wang H, Karnik R (2021) Tri-SUS: a yeast split-ubiquitin assay to examine protein interactions governed by a third binding partner. Plant Physiol 185:285–289

    CAS  PubMed  Google Scholar 

  27. Honsbein A, Sokolovski S, Grefen C et al (2009) A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis. Plant Cell 21:2859–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grefen C, Karnik R, Larson E et al (2015) A vesicle-trafficking protein commandeers Kv channel voltage sensors for voltage-dependent secretion. Nat Plants 1:15108

    Article  CAS  PubMed  Google Scholar 

  29. Grefen C, Chen ZH, Honsbein A et al (2010) A novel motif essential for SNARE interaction with the K+ channel KC1 and channel gating in arabidopsis. Plant Cell 22:3076–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hachez C, Laloux T, Reinhardt H et al (2014) Arabidopsis SNAREs SYP61 and SYP121 coordinate the trafficking of plasma membrane aquaporin PIP2;7 to modulate the cell membrane water permeability. Plant Cell 26:3132–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xia L, Mar Marques-Bueno M, Bruce CG, Karnik R (2019) Unusual roles of secretory SNARE SYP132 in plasma membrane H(+)-ATPase traffic and vegetative plant growth. Plant Physiol 180:837–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang J, Lautar S (1996) A yeast three-hybrid method to clone ternary protein complex components. Analytical Biochemistry 242:68–72

    Article  CAS  PubMed  Google Scholar 

  33. Tirode F, Malaguti C, Romero F et al (1997) A conditionally expressed third partner stabilizes or prevents the formation of a transcriptional activator in a three-hybrid system. J Biol Chem 272:22995–22999

    Article  CAS  PubMed  Google Scholar 

  34. Grefen C, Blatt MR (2012) Do calcineurin B-like proteins interact independently of the serine threonine kinase CIPK23 with the K+ channel AKT1? lessons learned from a menage a trois. Plant Physiology 159:915–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grefen C (2014) The split-ubiquitin system for the analysis of three-component interactions. Methods Mol Biol 1062:659–678

    Article  PubMed  Google Scholar 

  36. Obrdlik P, El Bakkoury M, Hamacher T et al (2004) K + channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. P Natl Acad Sci USA 101:12242–12247

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Lingfeng Xia for helping with the figures and for proofreading the text. Funding from the UK Biotechnology and Biological Sciences Research Council and the Royal Society of London is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Blatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Karnik, R., Blatt, M.R. (2023). Analyzing Protein–Protein Interactions Using the Split-Ubiquitin System. In: Mukhtar, S. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 2690. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3327-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3327-4_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3326-7

  • Online ISBN: 978-1-0716-3327-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics