Skip to main content

Cytotrap: An Innovative Approach for Protein–Protein Interaction Studies for Cytoplasmic Proteins

  • Protocol
  • First Online:
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2690))

Abstract

Protein–protein interaction mapping has gained immense importance in understanding protein functions in diverse biological pathways. There are various in vivo and in vitro techniques associated with the protein–protein interaction studies but generally, the focus is confined to understanding the protein interaction in the nucleus of the cell, and thus it limits the availability to explore protein interactions that are happening in the cytoplasm of the cell. Since posttranslational modification is a crucial step in signaling pathways and cellular protein interactions harnessing the cytoplasmic protein and evaluating the interaction in the cytoplasm, this protocol will provide more information about studying these types of protein interactions. Cytotrap is a type of yeast-two-hybrid system that differs in its ability to anchor along the membrane, thus directing the protein of interest to anchor along the membrane through the myristoylation signaling unit. The vector containing the target protein contains the myristoylation unit, called the prey, and the bait unit contains the protein of interest as a fusion with the hSos protein. In an event of interaction between the target and the protein of interest, the hSos protein unit will be localized to the membrane and the GDP/GTP exchange unit will trigger the activation of the Ras pathway that leads to the survival of the temperature-sensitive yeast strain at a higher temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar N, Mishra B, Mehmood A et al (2020) Integrative network biology framework elucidates molecular mechanisms of SARS-CoV-2 pathogenesis. Iscience 23(9):101526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahmed H, Howton TC, Sun Y et al (2018) Network biology discovers pathogen contact points in host protein-protein interactomes. Nat Commun 9(1):2312. https://doi.org/10.1038/s41467-018-04632-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arabidopsis Interactome Mapping C (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333(6042):601–607. https://doi.org/10.1126/science.1203877

    Article  CAS  Google Scholar 

  4. Garbutt CC, Bangalore PV, Kannar P et al (2014) Getting to the edge: protein dynamical networks as a new frontier in plant-microbe interactions. Front Plant Sci 5:312. https://doi.org/10.3389/fpls.2014.00312

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gonzalez-Fuente M, Carrere S, Monachello D et al (2020) Effector K, a comprehensive resource to mine for Ralstonia, Xanthomonas, and other published effector interactors in the Arabidopsis proteome. Mol Plant Pathol 21(10):1257–1270. https://doi.org/10.1111/mpp.12965

    Article  PubMed  PubMed Central  Google Scholar 

  6. Klopffleisch K, Phan N, Augustin K et al (2011) Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol Syst Biol 7:532. https://doi.org/10.1038/msb.2011.66

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kumar N, Mishra B, Mehmood A et al (2020) Integrative network biology framework elucidates molecular mechanisms of SARS-CoV-2 pathogenesis. iScience 23(9):101526. https://doi.org/10.1016/j.isci.2020.101526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumar N, Mishra B, Mukhtar MS (2022) A pipeline of integrating transcriptome and interactome to elucidate central nodes in host-pathogens interactions. STAR Protoc 3(3):101608. https://doi.org/10.1016/j.xpro.2022.101608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lopez J, Mukhtar MS (2017) Mapping protein-protein interaction using high-throughput yeast 2-hybrid. Methods Mol Biol 1610:217–230. https://doi.org/10.1007/978-1-4939-7003-2_14

    Article  CAS  PubMed  Google Scholar 

  10. McCormack ME, Lopez JA, Crocker TH et al (2016) Making the right connections: network biology and plant immune system dynamics. Current Plant Biology 5:2–12

    Article  Google Scholar 

  11. Mishra B, Kumar N, Mukhtar MS (2019) Systems biology and machine learning in plant-pathogen interactions. Mol Plant-Microbe Interact 32(1):45–55. https://doi.org/10.1094/MPMI-08-18-0221-FI

    Article  CAS  PubMed  Google Scholar 

  12. Mishra B, Kumar N, Mukhtar MS (2019) Systems biology and machine learning in plant–pathogen interactions. Mol Plant-Microbe Interact 32(1):45–55

    Article  CAS  PubMed  Google Scholar 

  13. Mishra B, Kumar N, Mukhtar MS (2021) Network biology to uncover functional and structural properties of the plant immune system. Curr Opin Plant Biol 62:102057. https://doi.org/10.1016/j.pbi.2021.102057

    Article  CAS  PubMed  Google Scholar 

  14. Mishra B, Kumar N, Shahid Mukhtar M (2022) A rice protein interaction network reveals high centrality nodes and candidate pathogen effector targets. Comput Struct Biotechnol J 20:2001–2012. https://doi.org/10.1016/j.csbj.2022.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mishra B, Sun Y, Ahmed H et al (2017) Global temporal dynamic landscape of pathogen-mediated subversion of Arabidopsis innate immunity. Sci Rep 7(1):7849. https://doi.org/10.1038/s41598-017-08073-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mishra B, Sun Y, Howton TC et al (2018) Dynamic modeling of transcriptional gene regulatory network uncovers distinct pathways during the onset of Arabidopsis leaf senescence. NPJ Syst Biol Appl 4:35. https://doi.org/10.1038/s41540-018-0071-2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mott GA, Smakowska-Luzan E, Pasha A et al (2019) Map of physical interactions between extracellular domains of Arabidopsis leucine-rich repeat receptor kinases. Sci Data 6:190025. https://doi.org/10.1038/sdata.2019.25

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mukhtar MS, Carvunis AR, Dreze M et al (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333(6042):596–601. https://doi.org/10.1126/science.1203659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smakowska-Luzan E, Mott GA, Parys K et al (2018) An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 553(7688):342–346. https://doi.org/10.1038/nature25184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wessling R, Epple P, Altmann S et al (2014) Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16(3):364–375. https://doi.org/10.1016/j.chom.2014.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar N, Mishra B, Mukhtar MS (2022) A pipeline of integrating transcriptome and interactome to elucidate central nodes in host-pathogens interactions. STAR protocols 3(3):101608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mishra B, Kumar N, Mukhtar MS (2022) A rice protein interaction network reveals high centrality nodes and candidate pathogen effector targets. Comput Struct Biotechnol J 20:2001–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pawson T, Nash P (2000) Protein–protein interactions define specificity in signal transduction. Genes Dev 14(9):1027–1047

    Article  CAS  PubMed  Google Scholar 

  24. Titeca K, Lemmens I, Tavernier J et al (2019) Discovering cellular protein-protein interactions: technological strategies and opportunities. Mass Spectrom Rev 38(1):79–111

    Article  CAS  PubMed  Google Scholar 

  25. Fields S, O-k S (1989) A novel genetic system to detect protein–protein interactions. Nature 340(6230):245–246

    Article  CAS  PubMed  Google Scholar 

  26. Ryu JY, Kim J, Shon MJ et al (2019) Profiling protein–protein interactions of single cancer cells with in situ lysis and co-immunoprecipitation. Lab Chip 19(11):1922–1928

    Article  CAS  PubMed  Google Scholar 

  27. Terracciano R, Preianò M, Fregola A et al (2021) Mapping the SARS-CoV-2–host protein–protein interactome by affinity purification mass spectrometry and proximity-dependent biotin labeling: a rational and straightforward route to discover host-directed anti-SARS-CoV-2 therapeutics. Int J Mol Sci 22(2):532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morris JH, Knudsen GM, Verschueren E et al (2014) Affinity purification–mass spectrometry and network analysis to understand protein-protein interactions. Nat Protoc 9(11):2539–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Remy I, Ghaddar G, Michnick SW (2007) Using the β-lactamase protein-fragment complementation assay to probe dynamic protein–protein interactions. Nat Protoc 2(9):2302–2306

    Article  CAS  PubMed  Google Scholar 

  30. Mishra K, Chakrabarti A, Das PK (2017) Protein–protein interaction probed by label-free second harmonic light scattering: hemoglobin adsorption on spectrin surface as a case study. J Phys Chem B 121(33):7797–7802

    Article  CAS  PubMed  Google Scholar 

  31. Skrabanek L, Saini HK, Bader GD et al (2008) Computational prediction of protein–protein interactions. Mol Biotechnol 38(1):1–17

    Article  CAS  PubMed  Google Scholar 

  32. Fields S The CytoTrap™ Two-Hybrid System. Cytotrap Brochure (leibniz-fli.de)

    Google Scholar 

  33. Lopez J, Mukhtar MS (2017) Mapping protein-protein interaction using high-throughput yeast 2-hybrid. In: Plant genomics. Springer, pp 217–230

    Chapter  Google Scholar 

  34. Jinju G, Liangliang S, Rufang W et al (2022) Construction of yeast two-hybrid library and screening of McRPF interacting proteins in the fruit of bitter gourd. Journal of Nuclear Agricultural Sciences 36(7):1293

    Google Scholar 

  35. Osman A (2004) Yeast two-hybrid assay for studying protein-protein interactions. In: Parasite genomics protocols. Springer, pp 403–422

    Chapter  Google Scholar 

  36. Chen Q, Wei T (2022) Membrane and nuclear yeast two-hybrid systems. In: Plant virology. Springer, pp 93–104

    Chapter  Google Scholar 

  37. Causier B, Davies B (2002) Analysing protein-protein interactions with the yeast two-hybrid system. Plant Mol Biol 50(6):855–870

    Article  CAS  PubMed  Google Scholar 

  38. Brückner A, Polge C, Lentze N et al (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10(6):2763–2788

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Science Foundation (IOS-2038872).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolina M. Pajerowska-Mukhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mohan, B., Thingujam, D., Pajerowska-Mukhtar, K.M. (2023). Cytotrap: An Innovative Approach for Protein–Protein Interaction Studies for Cytoplasmic Proteins. In: Mukhtar, S. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 2690. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3327-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3327-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3326-7

  • Online ISBN: 978-1-0716-3327-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics