Skip to main content

Dynamic Enrichment for Evaluation of Protein Networks (DEEPN): A High Throughput Yeast Two-Hybrid (Y2H) Protocol to Evaluate Networks

  • Protocol
  • First Online:
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2690))

  • 1347 Accesses

Abstract

Proteins are the building blocks of life, and a vast array of cellular processes is handled by protein–protein interactions (PPIs). The protein complexes formed via PPIs lead to tangled networks that, with their continuous remodeling, build up systematic functional units. Over the years, PPIs have become an area of interest for many researchers, leading to the development of multiple in vitro and in vivo methods to reveal these interactions. The yeast-two-hybrid (Y2H) system is a potent genetic way to map PPIs in both a micro- and high-throughput manner. Y2H is a technique that involves using modified yeast cells to identify protein–protein interactions. For Y2H, the yeast cells are engineered only to grow when there is a significant interaction between a specific protein with its interacting partner. PPIs are identified in the Y2H system by stimulating reporter genes in response to a restored transcription factor. However, Y2H results may be constrained by stringency requirements, as the limited number of colony screenings through this technique could result in the possible elimination of numerous genuine interactions. Therefore, DEEPN (dynamic enrichment for evaluation of protein networks) can be used, offering the potential to study the multiple static and transient protein interactions in a single Y2H experiment. DEEPN utilizes next-generation DNA sequencing (NGS) data in a high-throughput manner and subsequently applies computational analysis and statistical modeling to identify interacting partners. This protocol describes customized reagents and protocols through which DEEPN analysis can be utilized efficiently and cost-effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wessling R, Epple P, Altmann S et al (2014) Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16(3):364–375. https://doi.org/10.1016/j.chom.2014.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smakowska-Luzan E, Mott GA, Parys K et al (2018) An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 553(7688):342–346. https://doi.org/10.1038/nature25184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mukhtar MS, Carvunis AR, Dreze M et al (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333(6042):596–601. https://doi.org/10.1126/science.1203659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mott GA, Smakowska-Luzan E, Pasha A et al (2019) Map of physical interactions between extracellular domains of Arabidopsis leucine-rich repeat receptor kinases. Sci Data 6:190025. https://doi.org/10.1038/sdata.2019.25

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mishra B, Sun Y, Howton TC et al (2018) Dynamic modeling of transcriptional gene regulatory network uncovers distinct pathways during the onset of Arabidopsis leaf senescence. NPJ Syst Biol Appl 4:35. https://doi.org/10.1038/s41540-018-0071-2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mishra B, Sun Y, Ahmed H et al (2017) Global temporal dynamic landscape of pathogen-mediated subversion of Arabidopsis innate immunity. Sci Rep 7(1):7849. https://doi.org/10.1038/s41598-017-08073-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mishra B, Kumar N, Shahid Mukhtar M (2022) A rice protein interaction network reveals high centrality nodes and candidate pathogen effector targets. Comput Struct Biotechnol J 20:2001–2012. https://doi.org/10.1016/j.csbj.2022.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mishra B, Kumar N, Mukhtar MS (2021) Network biology to uncover functional and structural properties of the plant immune system. Curr Opin Plant Biol 62:102057. https://doi.org/10.1016/j.pbi.2021.102057

    Article  CAS  PubMed  Google Scholar 

  9. Mishra B, Kumar N, Mukhtar MS (2019) Systems biology and machine learning in plant-pathogen interactions. Mol Plant-Microbe Interact 32(1):45–55. https://doi.org/10.1094/MPMI-08-18-0221-FI

    Article  CAS  PubMed  Google Scholar 

  10. Marchand A, Van Hall-Beauvais AK, Correia BE (2022) Computational design of novel protein–protein interactions–An overview on methodological approaches and applications. Curr Opin Struct Biol 74:102370

    Article  CAS  PubMed  Google Scholar 

  11. McCormack ME, Lopez JA, Crocker TH et al (2016) Making the right connections: network biology and plant immune system dynamics. Current Plant Biology 5:2–12

    Article  Google Scholar 

  12. Lopez J, Mukhtar MS (2017) Mapping protein-protein interaction using high-throughput yeast 2-hybrid. Methods Mol Biol 1610:217–230. https://doi.org/10.1007/978-1-4939-7003-2_14

    Article  CAS  PubMed  Google Scholar 

  13. Kumar N, Mishra B, Mukhtar MS (2022) A pipeline of integrating transcriptome and interactome to elucidate central nodes in host-pathogens interactions. STAR Protoc 3(3):101608. https://doi.org/10.1016/j.xpro.2022.101608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kumar N, Mishra B, Mehmood A et al (2020) Integrative network biology framework elucidates molecular mechanisms of SARS-CoV-2 pathogenesis. iScience 23(9):101526. https://doi.org/10.1016/j.isci.2020.101526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Klopffleisch K, Phan N, Augustin K et al (2011) Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Mol Syst Biol 7:532. https://doi.org/10.1038/msb.2011.66

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gonzalez-Fuente M, Carrere S, Monachello D et al (2020) EffectorK, a comprehensive resource to mine for Ralstonia, Xanthomonas, and other published effector interactors in the Arabidopsis proteome. Mol Plant Pathol 21(10):1257–1270. https://doi.org/10.1111/mpp.12965

    Article  PubMed  PubMed Central  Google Scholar 

  17. Garbutt CC, Bangalore PV, Kannar P et al (2014) Getting to the edge: protein dynamical networks as a new frontier in plant-microbe interactions. Front Plant Sci 5:312. https://doi.org/10.3389/fpls.2014.00312

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arabidopsis Interactome Mapping C (2011) Evidence for network evolution in an Arabidopsis interactome map. Science 333(6042):601–607. https://doi.org/10.1126/science.1203877

    Article  CAS  Google Scholar 

  19. Ahmed H, Howton TC, Sun Y et al (2018) Network biology discovers pathogen contact points in host protein-protein interactomes. Nat Commun 9(1):2312. https://doi.org/10.1038/s41467-018-04632-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Berggård T, Linse S, James P (2007) Methods for the detection and analysis of protein–protein interactions. Proteomics 7(16):2833–2842

    Article  PubMed  Google Scholar 

  21. Lopez J, Mukhtar MS (2017) Mapping protein-protein interaction using high-throughput yeast 2-hybrid. In: Plant genomics. Springer, pp 217–230

    Chapter  Google Scholar 

  22. Brückner A, Polge C, Lentze N et al (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10(6):2763–2788

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mehla J, Caufield JH, Uetz P (2015) The yeast two-hybrid system: a tool for mapping protein–protein interactions. Cold Spring Harbor Protocols 2015 (5):pdb. top083345

    Google Scholar 

  24. Pashkova N, Peterson TA, Krishnamani V et al (2016) DEEPN as an approach for batch processing of yeast 2-hybrid interactions. Cell Rep 17(1):303–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rao VS, Srinivas K, Sujini G et al. (2014) Protein-protein interaction detection: methods and analysis. International journal of proteomics 2014

    Google Scholar 

  26. Fields S, Song O-k (1989) A novel genetic system to detect protein–protein interactions. Nature 340(6230):245–246

    Article  CAS  PubMed  Google Scholar 

  27. Vidalain P-O, Boxem M, Ge H et al (2004) Increasing specificity in high-throughput yeast two-hybrid experiments. Methods 32(4):363–370

    Article  CAS  PubMed  Google Scholar 

  28. Peterson TA, Stamnes MA, Piper RC (2018) A yeast 2-hybrid screen in batch to compare protein interactions. JoVE (Journal of Visualized Experiments) 136:e57801

    Google Scholar 

  29. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  PubMed  Google Scholar 

  30. Ehrt S, Schnappinger D (2003) Isolation of plasmids from E. coli by alkaline lysis. In: E. coli Plasmid Vectors. Springer, pp 75–78

    Chapter  Google Scholar 

  31. Walker JM (2002) SDS polyacrylamide gel electrophoresis of proteins. In: The protein protocols handbook. Springer, pp 61–67

    Chapter  Google Scholar 

  32. Gentleman R, Huber W (2007) Making the most of high-throughput protein-interaction data. Genome Biol 8(10):1–10

    Article  Google Scholar 

  33. Huang H, Jedynak BM, Bader JS (2007) Where have all the interactions gone? Estimating the coverage of two-hybrid protein interaction maps. PLoS Comput Biol 3(11):e214

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sutandy FR, Qian J, Chen CS et al (2013) Overview of protein microarrays. Curr Protoc Protein Sci 72 (1):27.21:21-27.21. 16

    Google Scholar 

  35. Miersch S, LaBaer J (2011) Nucleic acid programmable protein arrays: versatile tools for array-based functional protein studies. Curr Protoc Protein Sci 64 (1):27.22:21-27.22. 26

    Google Scholar 

  36. Fung E (2004) Protein arrays: Methods and protocols, vol 264. Springer

    Book  Google Scholar 

Download references

Acknowledgments

This research was funded by National Science Foundation (IOS-2038872).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolina M. Pajerowska-Mukhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fakhar, A.Z., Liu, J., Pajerowska-Mukhtar, K.M. (2023). Dynamic Enrichment for Evaluation of Protein Networks (DEEPN): A High Throughput Yeast Two-Hybrid (Y2H) Protocol to Evaluate Networks. In: Mukhtar, S. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 2690. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3327-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3327-4_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3326-7

  • Online ISBN: 978-1-0716-3327-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics