Skip to main content

Dynamic Proximity Tagging in Living Plant Cells with Pupylation-Based Interaction Tagging

  • Protocol
  • First Online:
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2690))

Abstract

Identification of protein–protein interactions (PPIs) and protein kinase substrates is fundamental for understanding how proteins exert biological functions with their partners and targets. However, it is still technically challenging, especially for transient and weak interactions involved in most cellular processes. The proximity-tagging systems enable capturing snapshots of both stable and transient PPIs. In this chapter, we describe in detail the methodology of a novel proximity-based labeling approach, PUP-IT (pupylation-based interaction tagging), to identify PPIs using a protoplast transient expression system. We have successfully identified potential kinase substrates by targeted screening and tandem mass spectrometry analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang S, Osgood AO, Chatterjee A (2022) Uncovering post-translational modification-associated protein-protein interactions. Curr Opin Struct Biol 74:102352. https://doi.org/10.1016/j.sbi.2022.102352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. De Las RJ, Fontanillo C (2010) Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6(6):e1000807. https://doi.org/10.1371/journal.pcbi.1000807

    Article  CAS  Google Scholar 

  3. Elhabashy H, Merino F, Alva V et al (2022) Exploring protein-protein interactions at the proteome level. Structure 30(4):462–475. https://doi.org/10.1016/j.str.2022.02.004

    Article  CAS  PubMed  Google Scholar 

  4. Lin CPJ, Vela S et al (2021) Spatial and single-cell proteomics workshop report. J Proteomics Bioinformatics 14:553

    Google Scholar 

  5. Zhang T, Chen S, Harmon AC (2016) Protein-protein interactions in plant mitogen-activated protein kinase cascades. J Exp Bot 67(3):607–618. https://doi.org/10.1093/jxb/erv508

    Article  CAS  PubMed  Google Scholar 

  6. Motani K, Kosako H (2020) BioID screening of biotinylation sites using the avidin-like protein Tamavidin 2-REV identifies global interactors of stimulator of interferon genes (STING). J Biol Chem 295(32):11174–11183. https://doi.org/10.1074/jbc.RA120.014323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cho KF, Branon TC, Udeshi ND et al (2020) Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat Protoc 15(12):3971–3999. https://doi.org/10.1038/s41596-020-0399-0

    Article  CAS  PubMed  Google Scholar 

  8. Udeshi ND, Pedram K, Svinkina T et al (2017) Antibodies to biotin enable large-scale detection of biotinylation sites on proteins. Nat Methods 14(12):1167–1170. https://doi.org/10.1038/nmeth.4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hung V, Lam SS, Udeshi ND et al (2017) Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. elife 6. https://doi.org/10.7554/eLife.24463

  10. Arora D, Abel NB, Liu C et al (2020) Establishment of proximity-dependent Biotinylation approaches in different plant model systems. Plant Cell 32(11):3388–3407. https://doi.org/10.1105/tpc.20.00235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mair A, Xu SL, Branon TC et al (2019) Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. elife 8. https://doi.org/10.7554/eLife.47864

  12. Hiraga S, Sasaki K, Ito H et al (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42(5):462–468. https://doi.org/10.1093/pcp/pce061

    Article  CAS  PubMed  Google Scholar 

  13. Liu Q, Zheng J, Sun W et al (2018) A proximity-tagging system to identify membrane protein-protein interactions. Nat Methods 15(9):715–722. https://doi.org/10.1038/s41592-018-0100-5

    Article  CAS  PubMed  Google Scholar 

  14. Yang X, Wen Z, Zhang D et al (2021) Proximity labeling: an emerging tool for probing in planta molecular interactions. Plant Commun 2(2):100137. https://doi.org/10.1016/j.xplc.2020.100137

    Article  CAS  PubMed  Google Scholar 

  15. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2(7):1565–1572. https://doi.org/10.1038/nprot.2007.199

    Article  CAS  PubMed  Google Scholar 

  16. Niu Y, Sheen J (2012) Transient expression assays for quantifying signaling output. Methods Mol Biol 876:195–206. https://doi.org/10.1007/978-1-61779-809-2_16

    Article  CAS  PubMed  Google Scholar 

  17. Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127(4):1466–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ye R, Wang M, Du H et al (2022) Glucose-driven TOR-FIE-PRC2 signalling controls plant development. Nature 609(7929):986-993. https://doi.org/10.1038/s41586-022-05171-5

  19. Jiang W, Bush J, Sheen J (2021) A versatile and efficient plant protoplast platform for genome editing by Cas9 RNPs. Front Genome Ed 3:719190. https://doi.org/10.3389/fgeed.2021.719190

    Article  PubMed  PubMed Central  Google Scholar 

  20. Perron N, Tan B, Dufresne CP et al (2023) Proteomics and phosphoproteomics of C3 to CAM transition in the common ice plant. Methods Enzymol. https://doi.org/10.1016/bs.mie.2022.06.004

Download references

Acknowledgments

We thank former and current members of the Sheen Laboratory for their efforts in improving the Arabidopsis mesophyll protoplasts transient expression system. We thank Jenifer Bush for plant management. This work was supported by the NIH grants GM060493 and GM129093 to J.S. and R.Q.Y., National Natural Science Foundation of China grants 32170270 and 31870227 to K.-H. L., and USDA 2020-67013-31615/accession no. 1022409 grant to S.C. (co-PI) and Ping He (PI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruiqiang Ye or Sixue Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ye, R., Lin, Z., Liu, KH., Sheen, J., Chen, S. (2023). Dynamic Proximity Tagging in Living Plant Cells with Pupylation-Based Interaction Tagging. In: Mukhtar, S. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 2690. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3327-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3327-4_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3326-7

  • Online ISBN: 978-1-0716-3327-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics