Skip to main content

Hormones and Flower Development in Arabidopsis

  • Protocol
  • First Online:
Flower Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2686))

Abstract

Sexual reproduction requires the participation of two gametes, female and male. In angiosperms, gametes develop in specialized organs, pollen (containing the male gametes) develops in the stamens, and the ovule (containing the female gamete) develops in the gynoecium. In Arabidopsis thaliana, the female and male sexual organs are found within the same structure called flower, surrounded by the perianth, which is composed of petals and sepals. During flower development, different organs emerge in an established order and throughout their development distinct tissues within each organ are differentiated. All this requires the coordination and synchronization of several biological processes. To achieve this, hormones and genes work together. These components can interact at different levels generating hormonal interplay and both positive and negative feedback loops, which in turn, gives robustness, stability, and flexibility to flower development. Here, we summarize the progress made on elucidating the role of different hormonal pathways during flower development in Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Alvarez-Buylla ER, Benítez M, Corvera-Poiré A et al (2010) Flower development. Arabidopsis Book 8:e0127

    Article  PubMed  PubMed Central  Google Scholar 

  3. Roeder AHK, Yanofsky MF (2006) Fruit development in Arabidopsis Arabidopsis Book 4:e0075

    Article  PubMed  Google Scholar 

  4. Simonini S, Østergaard L (2018) Female reproductive organ formation: a multitasking endeavor. Curr Top Dev Biol 131:337–371

    Article  PubMed  Google Scholar 

  5. Thomson B, Wellmer F (2019) Molecular regulation of flower development. Curr Top Dev Biol 131:185–210

    Article  PubMed  Google Scholar 

  6. Zúñiga-Mayo VM, Gómez-Felipe A, Herrera-Ubaldo H, de Folter S (2019) Gynoecium development: networks in Arabidopsis and beyond. J Exp Bot 70:1447–1460

    Article  PubMed  Google Scholar 

  7. Herrera-Ubaldo H, de Folter S (2022) Gynoecium and fruit development in Arabidopsis. Development 149:dev200120

    Article  CAS  PubMed  Google Scholar 

  8. Gaillochet C, Lohmann JU (2015) The never-ending story: from pluripotency to plant developmental plasticity. Development 142:2237–2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamaguchi N, Winter CM, Wu MF et al (2014) Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344:638–642

    Article  CAS  PubMed  Google Scholar 

  10. Chandler JW (2012) Floral meristem initiation and emergence in plants. Cell Mol Life Sci 69:3807–3818

    Article  CAS  PubMed  Google Scholar 

  11. Galvao VC, Horrer D, Kuttner F, Schmid M (2012) Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development 139:4072–4082

    Article  CAS  PubMed  Google Scholar 

  12. Yu S, Galvão VC, Zhang YC et al (2012) Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING–LIKE transcription factors. Plant Cell 24:3320–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Porri A, Torti S, Romera-Branchat M, Coupland G (2012) Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 139:2198–2209

    Article  CAS  PubMed  Google Scholar 

  14. D’Aloia M, Bonhomme D, Bouché F et al (2011) Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J 65:972–979

    Article  PubMed  Google Scholar 

  15. Zhai Q, Zhang X, Wu F et al (2015) Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell 27:2814–2828

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reinhardt D, Pesce ER, Stieger P et al (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  CAS  PubMed  Google Scholar 

  18. Benková E, Michniewicz M, Sauer M et al (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  Google Scholar 

  19. Heisler MG, Ohno C, Das P et al (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911

    Article  CAS  PubMed  Google Scholar 

  20. de Reuille PB, Bohn-Courseau I, Ljung K et al (2006) Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sci U S A 103:1627–1632

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jönsson H, Heisler MG, Shapiro BE et al (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci U S A 103:1633–1638

    Article  PubMed  PubMed Central  Google Scholar 

  22. Smith RS, Guyomarc’h S, Mandel T et al (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci U S A 103:1301–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Besnard F, Refahi Y, Morin V et al (2014) Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature 505:417–421

    Article  CAS  PubMed  Google Scholar 

  24. Besnard F, Rozier F, Vernoux T (2014) The AHP6 cytokinin signaling inhibitor mediates an auxin-cytokinin crosstalk that regulates the timing of organ initiation at the shoot apical meristem. Plant Signal Behav 9:e28788

    Article  PubMed  PubMed Central  Google Scholar 

  25. Furutani M, Nakano Y, Tasaka M (2014) MAB4-induced auxin sink generates local auxin gradients in Arabidopsis organ formation. Proc Natl Acad Sci U S A 111:1198–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adibi M, Yoshida S, Weijers D, Fleck C (2016) Centering the organizing center in the Arabidopsis thaliana shoot apical meristem by a combination of cytokinin signaling and self-organization. PLoS One 12(3):e0174751

    Article  Google Scholar 

  27. Gruel J, Landrein B, Tarr P et al (2016) An epidermis-driven mechanism positions and scales stem cell niches in plants. Sci Adv 2:e1500989

    Article  PubMed  PubMed Central  Google Scholar 

  28. Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328

    Article  CAS  PubMed  Google Scholar 

  29. Chandler JW (2011) Founder cell specification. Trends Plant Sci 16:607–613

    Article  CAS  PubMed  Google Scholar 

  30. Chandler JW, Jacobs B, Cole M et al (2011) DORNRÖSCHEN-LIKE expression marks Arabidopsis floral organ founder cells and precedes auxin response maxima. Plant Mol Biol 76:171–185

    Article  CAS  PubMed  Google Scholar 

  31. Chandler JW, Werr W (2014) Arabidopsis floral phytomer development: auxin response relative to biphasic modes of organ initiation. J Exp Bot 65:3097–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Mourik S, Kaufmann K, van Dijk ADJ et al (2012) Simulation of organ patterning on the floral meristem using a polar auxin transport model. PLoS One 7:e28762

    Article  PubMed  PubMed Central  Google Scholar 

  33. La Rota C, Chopard J, Das P et al (2011) A data-driven integrative model of sepal primordium polarity in Arabidopsis. Plant Cell 23:4318–4333

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhu M, Chen W, Mirabet V et al (2020) Robust organ size requires robust timing of initiation orchestrated by focused auxin and cytokinin signalling. Nat Plants 6:686–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jibran R, Tahir J, Cooney J et al (2017) Arabidopsis AGAMOUS regulates sepal senescence by driving jasmonate production. Front Plant Sci 8:2101

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hill JP, Lord EM (1989) Floral development in Arabidopsis thaliana: a comparison of the wild type and the homeotic pistillata mutant. Can J Bot 67:2922–2936

    Article  Google Scholar 

  37. Lampugnani ER, Kilinc A, Smyth DR (2013) Auxin controls petal initiation in Arabidopsis. Development 140:185–194

    Article  CAS  PubMed  Google Scholar 

  38. Sauret-Güeto S, Schiessl K, Bangham A et al (2013) JAGGED controls Arabidopsis petal growth and shape by interacting with a divergent polarity field. PLoS Biol 11:e1001550

    Article  PubMed  PubMed Central  Google Scholar 

  39. Krizek BA, Anderson JT (2013) Control of flower size. J Exp Bot 64:1427–1437

    Article  CAS  PubMed  Google Scholar 

  40. Huang T, Irish VF (2016) Gene networks controlling petal organogenesis. J Exp Bot 67:61–68

    Article  PubMed  Google Scholar 

  41. Varaud E, Brioudes F, Szécsi J et al (2011) AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp. Plant Cell 23:973–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reeves PH, Ellis CM, Ploense SE et al (2012) A regulatory network for coordinated flower maturation. PLoS Genet 8:e1002506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng H, Song S, Xiao L et al (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5:e1000440

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pei H, Ma N, Tian J et al (2013) A NAC transcription factor controls ethylene-regulated cell expansion in flower petals. Plant Physiol 163:775–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. van Es SW, Silveira SR, Rocha DI et al (2018) Novel functions of the Arabidopsis transcription factor TCP5 in petal development and ethylene biosynthesis. Plant J 94:867–879

    Article  PubMed  PubMed Central  Google Scholar 

  46. Brioudes F, Joly C, Szécsi J et al (2009) Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. Plant J 60:1070–1080

    Article  CAS  PubMed  Google Scholar 

  47. Sanders P, Bui AQ, Weterings K et al (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322

    Article  CAS  Google Scholar 

  48. Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434

    Article  CAS  PubMed  Google Scholar 

  49. Cardarelli M, Cecchetti V (2014) Auxin polar transport in stamen formation and development: how many actors? Front Plant Sci 5:333

    Article  PubMed  PubMed Central  Google Scholar 

  50. Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Feng X, Dickinson HG (2010) Tapetal cell fate, lineage and proliferation in the Arabidopsis anther. Development 137:2409–2416

    Article  CAS  PubMed  Google Scholar 

  52. Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sessions A, Nemhauser JL, McCall A et al (1997) ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124:4481–4491

    Article  CAS  PubMed  Google Scholar 

  54. Okada K, Ueda J, Komaki MK et al (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu Y, Prunet N, Gan ES et al (2018) SUPERMAN regulates floral whorl boundaries through control of auxin biosynthesis. EMBO J 37:e97499

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bennett SRM, Alvarez J, Bossinger G, Smyth DR (1995) Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J 8:505–520

    Article  CAS  Google Scholar 

  57. Cecchetti V, Brunetti P, Napoli N et al (2015) ABCB1 and ABCB19 auxin transporters have synergistic effects on early and late Arabidopsis anther development. J Integr Plant Biol 57:1089–1098

    Article  CAS  PubMed  Google Scholar 

  58. Yao X, Tian L, Yang J et al (2018) Auxin production in diploid microsporocytes is necessary and sufficient for early stages of pollen development. PLoS Genet 14:e1007397

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cecchetti V, Altamura MM, Falasca G et al (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cecchetti V, Celebrin D, Napoli N et al (2017) An auxin maximum in the middle layer controls stamen development and pollen maturation in Arabidopsis. New Phytol 213:1194–1207

    Article  CAS  PubMed  Google Scholar 

  61. Ghelli R, Brunetti P, Napoli N et al (2018) A newly identified flower-specific splice variant of AUXIN RESPONSE FACTOR8 regulates stamen elongation and endothecium lignification in Arabidopsis. Plant Cell 30:620–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Feng XL, Ni WM, Elge S et al (2006) Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol Biol 61:215–226

    Article  CAS  PubMed  Google Scholar 

  63. Salinas-Grenet H, Herrera-Vásquez A, Parra S et al (2018) Modulation of auxin levels in pollen grains afects stamen development and anther dehiscence in Arabidopsis. Int J Mol Sci 19:2480

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mitchum MG, Yamaguchi S, Hanada A et al (2006) Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J 45:804–818

    Article  CAS  PubMed  Google Scholar 

  65. Hu J, Mitchum MG, Barnaby N et al (2008) Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20:320–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Plackett ARG, Thomas SG, Wilson ZA, Hedden P (2011) Gibberellin control of stamen development: a fertile field. Trends Plant Sci 16:568–578

    Article  CAS  PubMed  Google Scholar 

  67. Cheng H, Qin L, Lee S et al (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055–1064

    Article  CAS  PubMed  Google Scholar 

  68. Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Plackett ARG, Ferguson AC, Powers SJ et al (2014) DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis. New Phytol 201:825–836

    Article  CAS  PubMed  Google Scholar 

  70. Arnaud N, Girin T, Sorefan K et al (2010) Gibberellins control fruit patterning in Arabidopsis thaliana. Genes Dev 24:2127–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tabata R, Ikezaki M, Fujibe T et al (2010) Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol 51:164–175

    Article  CAS  PubMed  Google Scholar 

  72. Nagpal P, Ellis CM, Weber H et al (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    Article  CAS  PubMed  Google Scholar 

  73. Cecchetti V, Altamura MM, Brunetti P et al (2013) Auxin controls arabidopsis anther dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis. Plant J 74:411–422

    Article  CAS  PubMed  Google Scholar 

  74. Grove MD, Spencer GF, Rohwedder WK et al (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  75. Szekeres M, Németh K, Koncz-Kálmán Z et al (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  CAS  PubMed  Google Scholar 

  76. Bouquin T, Meier C, Foster R et al (2001) Control of specific gene expression by gibberellin and brassinosteroid. Plant Physiol 127:450–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ye Q, Zhu W, Li L et al (2010) Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc Natl Acad Sci U S A 107:6100–6105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Higuchi M, Pischke MS, Mahonen AP et al (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci U S A 101:8821–8826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nishimura C, Ohashi Y, Sato S et al (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16:1365–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jung KW, Oh SI, Kim YY et al (2008) Arabidopsis histidine-containing phosphotransfer factor 4 (AHP4) negatively regulates secondary wall thickening of the anther endothecium during flowering. Mol Cells 25:294–300

    CAS  PubMed  Google Scholar 

  81. Kinoshita-Tsujimura K, Kakimoto T (2011) Cytokinin receptors in sporophytes are essential for male and female functions in Arabidopsis thaliana. Plant Signal Behav 6:66–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Reyes-Olalde JI, Zuñiga-Mayo VM, Chávez Montes RA et al (2013) Inside the gynoecium: at the carpel margin. Trends Plant Sci 18:644–655

    Article  CAS  PubMed  Google Scholar 

  83. Ballester P, Ferrándiz C (2017) Shattering fruits: variations on a dehiscent theme. Curr Opin Plant Biol 35:68–75

    Article  PubMed  Google Scholar 

  84. Reyes-Olalde JI, de Folter S (2019) Control of stem cell activity in the carpel margin meristem (CMM) in Arabidopsis. Plant Reprod 32:123–136

    Article  CAS  PubMed  Google Scholar 

  85. Marsch-Martínez N, de Folter S (2016) Hormonal control of the development of the gynoecium. Curr Opin Plant Biol 29:104–114

    Article  PubMed  Google Scholar 

  86. Marsch-Martínez N, Ramos-Cruz D, Reyes-Olalde JI et al (2012) The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning. Plant J 72:222–234

    Article  PubMed  Google Scholar 

  87. Larsson E, Roberts CJ, Claes AR et al (2014) Polar auxin transport is essential for medial versus lateral tissue specification and vascular-mediated valve outgrowth in Arabidopsis gynoecia. Plant Physiol 166:1998–2012

    Article  PubMed  PubMed Central  Google Scholar 

  88. Reyes-Olalde JI, Zúñiga-Mayo VM, Serwatowska J et al (2017) The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genet 13:e1006726

    Article  PubMed  PubMed Central  Google Scholar 

  89. Reyes-Olalde JI, Zúñiga-Mayo VM, Marsch-Martínez N, de Folter S (2017) Synergistic relationship between auxin and cytokinin in the ovary and the participation of the transcription factor SPATULA. Plant Signal Behav 12:e1376158

    Article  PubMed  PubMed Central  Google Scholar 

  90. Müller CJ, Larsson E, Spíchal L, Sundberg E (2017) Cytokinin-auxin crosstalk in the gynoecial primordium ensures correct domain patterning. Plant Physiol 175:1144–1157

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhang K, Wang R, Zi H et al (2018) AUXIN RESPONSE FACTOR3 regulates floral meristem determinacy by repressing cytokinin biosynthesis and signaling. Plant Cell 30:324–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yamaguchi N, Huang J, Xu Y et al (2017) Fine-tuning of auxin homeostasis governs the transition from floral stem cell maintenance to gynoecium formation. Nat Commun 8:1125

    Article  PubMed  PubMed Central  Google Scholar 

  93. Yamaguchi N, Huang J, Tatsumi Y et al (2018) Chromatin-mediated feed-forward auxin biosynthesis in floral meristem determinacy. Nat Commun 9:5290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xu Y, Yamaguchi N, Gan ES, Ito T (2019) When to stop: an update on molecular mechanisms of floral meristem termination. J Exp Bot 70:1711–1718

    Article  CAS  PubMed  Google Scholar 

  95. Moubayidin L, Ostergaard L (2014) Dynamic control of auxin distribution imposes a bilateral-to-radial symmetry switch during gynoecium development. Curr Biol 24:2743–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schuster C, Gaillochet C, Lohmann JU (2015) Arabidopsis HECATE genes function in phytohormone control during gynoecium development. Development 142:3343–3350

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bartrina I, Otto E, Strnad M et al (2011) Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and, thus, seed yield in Arabidopsis thaliana. Plant Cell 23:69–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cucinotta M, Manrique S, Guazzotti A et al (2016) Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development. Development 143:4419–4424

    CAS  PubMed  Google Scholar 

  99. Zuñiga-Mayo VM, Baños-Bayardo CR, Díaz-Ramírez D et al (2018) Conserved and novel responses to cytokinin treatments during flower and fruit development in Brassica napus and Arabidopsis thaliana. Sci Rep 8:6836

    Article  PubMed  PubMed Central  Google Scholar 

  100. Barro-Trastoy D, Dolores Gomez M, Tornero P, Perez-Amador MA (2020) On the way to ovules: the hormonal regulation of ovule development. Crit Rev Plant Sci 39:431–456

    Article  CAS  Google Scholar 

  101. Cucinotta M, Di Marzo M, Guazzotti A et al (2020) Gynoecium size and ovule number are interconnected traits that impact seed yield. J Exp Bot 71:2479–2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cerbantez-Bueno VE, Zúñiga-Mayo VM, Reyes-Olalde JI et al (2020) Redundant and non-redundant functions of the AHK cytokinin receptors during gynoecium development. Front Plant Sci 11:568277

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gómez-Felipe A, Kierzkowski D, de Folter S (2021) The relationship between AGAMOUS and cytokinin signaling in the establishment of carpeloid features. Plan Theory 10:827–836

    Google Scholar 

  104. Rong XF, Sang YL, Wang L et al (2018) Type-B ARRs control carpel regeneration through mediating AGAMOUS expression in Arabidopsis. Plant Cell Physiol 59:761–769

    Article  CAS  Google Scholar 

  105. Nemhauser JL, Feldman LJ, Zambryski PC (2000) Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development 127:3877–3888

    Article  CAS  PubMed  Google Scholar 

  106. Nole-Wilson S, Azhakanandam S, Franks RG (2010) Polar auxin transport together with AINTEGUMENTA and REVOLUTA coordinate early Arabidopsis gynoecium development. Dev Biol 346:181–195

    Article  CAS  PubMed  Google Scholar 

  107. Stepanova AN, Robertson-Hoyt J, Yun J et al (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    Article  CAS  PubMed  Google Scholar 

  108. Larsson E, Franks RG, Sundberg E (2013) Auxin and the Arabidopsis thaliana gynoecium. J Exp Bot 64:2619–2627

    Article  CAS  PubMed  Google Scholar 

  109. Zúñiga-Mayo VM, Reyes-Olalde JI, Marsch-Martinez N, de Folter S (2014) Cytokinin treatments affect the apical-basal patterning of the Arabidopsis gynoecium and resemble the effects of polar auxin transport inhibition. Front Plant Sci 5:191

    PubMed  PubMed Central  Google Scholar 

  110. Durán-Medina Y, Serwatowska J, Reyes-Olalde JI et al (2017) The AP2/ERF transcription factor DRNL modulates gynoecium development and affects its response to cytokinin. Front Plant Sci 8:1841

    Article  PubMed  PubMed Central  Google Scholar 

  111. Simonini S, Deb J, Moubayidin L et al (2016) A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis. Genes Dev 30:2286–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Simonini S, Mas PJ, Mas CMVS et al (2018) Auxin sensing is a property of an unstructured domain in the Auxin Response Factor ETTIN of Arabidopsis thaliana. Sci Rep 8:13563

    Article  PubMed  PubMed Central  Google Scholar 

  113. Cucinotta M, Cavalleri A, Guazzotti A et al (2021) Alternative splicing generates a MONOPTEROS isoform required for ovule development. Curr Biol 31:892–899

    Article  CAS  PubMed  Google Scholar 

  114. Nole-Wilson S, Rueschhoff EE, Bhatti H, Franks RG (2010) Synergistic disruptions in seuss cyp85A2 double mutants reveal a role for brassinolide synthesis during gynoecium and ovule development. BMC Plant Biol 10:198

    Article  PubMed  PubMed Central  Google Scholar 

  115. Huang HY, Jiang WB, Hu YW et al (2013) BR signal influences Arabidopsis ovule and seed number through regulating related genes expression by BZR1. Mol Plant 6:456–469

    Article  CAS  PubMed  Google Scholar 

  116. Barro-Trastoy D, Carrera E, Baños J et al (2020) Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. Plant J 102:1026–1041

    Article  CAS  PubMed  Google Scholar 

  117. Crawford BCW, Yanofsky MF (2011) HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana. Development 138:2999–3009

    Article  CAS  PubMed  Google Scholar 

  118. Vogler F, Schmalzl C, Englhart M et al (2014) Brassinosteroids promote Arabidopsis pollen germination and growth. Plant Reprod 27:153–167

    Article  CAS  PubMed  Google Scholar 

  119. Gomez MD, Barro-Trastoy D, Escoms E et al (2018) Gibberellins negatively modulate ovule number in plants. Development 145:dev163865

    Article  PubMed  PubMed Central  Google Scholar 

  120. Barro-Trastoy D, Gomez MD, Blanco-Touriñán N et al (2022) Gibberellins regulate ovule number through a DELLA–CUC2 complex in Arabidopsis. Plant J 110:43–57

    Article  CAS  PubMed  Google Scholar 

  121. Sorefan K, Girin T, Liljegren SJ et al (2009) A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 459:583–586

    Article  CAS  PubMed  Google Scholar 

  122. van Gelderen K, van Rongen M, Liu A et al (2016) An INDEHISCENT-controlled auxin response specifies the separation layer in early arabidopsis fruit. Mol Plant 9:857–869

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

VMZM research is supported by the Cátedras-CONACyT program, grant number 5016 and Colegio de Postgraduados. Work in the SDF laboratory was financed by the Mexican National Council of Science and Technology (CONACyT) grants CB-2012-177739, FC-2015-2/1061, and CB-2017-2018/A1-S-10126, and NMM and YDM by the CONACyT grant CB-2015-255069. SDF also acknowledges support of the Marcos Moshinsky Foundation and participation in the European Union H2020-MSCA-RISE-2015 project ExpoSEED (grant no. 691109), H2020-MSCA-RISE-2019 project MAD (grant no. 872417), and H2020-MSCA-RISE-2020 project EVOfruland (grant no. 101007738).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan de Folter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zúñiga-Mayo, V.M., Durán-Medina, Y., Marsch-Martínez, N., de Folter, S. (2023). Hormones and Flower Development in Arabidopsis. In: Riechmann, J.L., Ferrándiz, C. (eds) Flower Development . Methods in Molecular Biology, vol 2686. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3299-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3299-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3298-7

  • Online ISBN: 978-1-0716-3299-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics