Abstract
Sexual reproduction requires the participation of two gametes, female and male. In angiosperms, gametes develop in specialized organs, pollen (containing the male gametes) develops in the stamens, and the ovule (containing the female gamete) develops in the gynoecium. In Arabidopsis thaliana, the female and male sexual organs are found within the same structure called flower, surrounded by the perianth, which is composed of petals and sepals. During flower development, different organs emerge in an established order and throughout their development distinct tissues within each organ are differentiated. All this requires the coordination and synchronization of several biological processes. To achieve this, hormones and genes work together. These components can interact at different levels generating hormonal interplay and both positive and negative feedback loops, which in turn, gives robustness, stability, and flexibility to flower development. Here, we summarize the progress made on elucidating the role of different hormonal pathways during flower development in Arabidopsis thaliana.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767
Alvarez-Buylla ER, Benítez M, Corvera-Poiré A et al (2010) Flower development. Arabidopsis Book 8:e0127
Roeder AHK, Yanofsky MF (2006) Fruit development in Arabidopsis Arabidopsis Book 4:e0075
Simonini S, Østergaard L (2018) Female reproductive organ formation: a multitasking endeavor. Curr Top Dev Biol 131:337–371
Thomson B, Wellmer F (2019) Molecular regulation of flower development. Curr Top Dev Biol 131:185–210
Zúñiga-Mayo VM, Gómez-Felipe A, Herrera-Ubaldo H, de Folter S (2019) Gynoecium development: networks in Arabidopsis and beyond. J Exp Bot 70:1447–1460
Herrera-Ubaldo H, de Folter S (2022) Gynoecium and fruit development in Arabidopsis. Development 149:dev200120
Gaillochet C, Lohmann JU (2015) The never-ending story: from pluripotency to plant developmental plasticity. Development 142:2237–2249
Yamaguchi N, Winter CM, Wu MF et al (2014) Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344:638–642
Chandler JW (2012) Floral meristem initiation and emergence in plants. Cell Mol Life Sci 69:3807–3818
Galvao VC, Horrer D, Kuttner F, Schmid M (2012) Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development 139:4072–4082
Yu S, Galvão VC, Zhang YC et al (2012) Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING–LIKE transcription factors. Plant Cell 24:3320–3332
Porri A, Torti S, Romera-Branchat M, Coupland G (2012) Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 139:2198–2209
D’Aloia M, Bonhomme D, Bouché F et al (2011) Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J 65:972–979
Zhai Q, Zhang X, Wu F et al (2015) Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell 27:2814–2828
Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518
Reinhardt D, Pesce ER, Stieger P et al (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260
Benková E, Michniewicz M, Sauer M et al (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602
Heisler MG, Ohno C, Das P et al (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911
de Reuille PB, Bohn-Courseau I, Ljung K et al (2006) Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sci U S A 103:1627–1632
Jönsson H, Heisler MG, Shapiro BE et al (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci U S A 103:1633–1638
Smith RS, Guyomarc’h S, Mandel T et al (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci U S A 103:1301–1306
Besnard F, Refahi Y, Morin V et al (2014) Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature 505:417–421
Besnard F, Rozier F, Vernoux T (2014) The AHP6 cytokinin signaling inhibitor mediates an auxin-cytokinin crosstalk that regulates the timing of organ initiation at the shoot apical meristem. Plant Signal Behav 9:e28788
Furutani M, Nakano Y, Tasaka M (2014) MAB4-induced auxin sink generates local auxin gradients in Arabidopsis organ formation. Proc Natl Acad Sci U S A 111:1198–1203
Adibi M, Yoshida S, Weijers D, Fleck C (2016) Centering the organizing center in the Arabidopsis thaliana shoot apical meristem by a combination of cytokinin signaling and self-organization. PLoS One 12(3):e0174751
Gruel J, Landrein B, Tarr P et al (2016) An epidermis-driven mechanism positions and scales stem cell niches in plants. Sci Adv 2:e1500989
Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328
Chandler JW (2011) Founder cell specification. Trends Plant Sci 16:607–613
Chandler JW, Jacobs B, Cole M et al (2011) DORNRÖSCHEN-LIKE expression marks Arabidopsis floral organ founder cells and precedes auxin response maxima. Plant Mol Biol 76:171–185
Chandler JW, Werr W (2014) Arabidopsis floral phytomer development: auxin response relative to biphasic modes of organ initiation. J Exp Bot 65:3097–3110
van Mourik S, Kaufmann K, van Dijk ADJ et al (2012) Simulation of organ patterning on the floral meristem using a polar auxin transport model. PLoS One 7:e28762
La Rota C, Chopard J, Das P et al (2011) A data-driven integrative model of sepal primordium polarity in Arabidopsis. Plant Cell 23:4318–4333
Zhu M, Chen W, Mirabet V et al (2020) Robust organ size requires robust timing of initiation orchestrated by focused auxin and cytokinin signalling. Nat Plants 6:686–698
Jibran R, Tahir J, Cooney J et al (2017) Arabidopsis AGAMOUS regulates sepal senescence by driving jasmonate production. Front Plant Sci 8:2101
Hill JP, Lord EM (1989) Floral development in Arabidopsis thaliana: a comparison of the wild type and the homeotic pistillata mutant. Can J Bot 67:2922–2936
Lampugnani ER, Kilinc A, Smyth DR (2013) Auxin controls petal initiation in Arabidopsis. Development 140:185–194
Sauret-Güeto S, Schiessl K, Bangham A et al (2013) JAGGED controls Arabidopsis petal growth and shape by interacting with a divergent polarity field. PLoS Biol 11:e1001550
Krizek BA, Anderson JT (2013) Control of flower size. J Exp Bot 64:1427–1437
Huang T, Irish VF (2016) Gene networks controlling petal organogenesis. J Exp Bot 67:61–68
Varaud E, Brioudes F, Szécsi J et al (2011) AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp. Plant Cell 23:973–983
Reeves PH, Ellis CM, Ploense SE et al (2012) A regulatory network for coordinated flower maturation. PLoS Genet 8:e1002506
Cheng H, Song S, Xiao L et al (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5:e1000440
Pei H, Ma N, Tian J et al (2013) A NAC transcription factor controls ethylene-regulated cell expansion in flower petals. Plant Physiol 163:775–791
van Es SW, Silveira SR, Rocha DI et al (2018) Novel functions of the Arabidopsis transcription factor TCP5 in petal development and ethylene biosynthesis. Plant J 94:867–879
Brioudes F, Joly C, Szécsi J et al (2009) Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. Plant J 60:1070–1080
Sanders P, Bui AQ, Weterings K et al (1999) Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod 11:297–322
Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434
Cardarelli M, Cecchetti V (2014) Auxin polar transport in stamen formation and development: how many actors? Front Plant Sci 5:333
Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229
Feng X, Dickinson HG (2010) Tapetal cell fate, lineage and proliferation in the Arabidopsis anther. Development 137:2409–2416
Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799
Sessions A, Nemhauser JL, McCall A et al (1997) ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124:4481–4491
Okada K, Ueda J, Komaki MK et al (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684
Xu Y, Prunet N, Gan ES et al (2018) SUPERMAN regulates floral whorl boundaries through control of auxin biosynthesis. EMBO J 37:e97499
Bennett SRM, Alvarez J, Bossinger G, Smyth DR (1995) Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J 8:505–520
Cecchetti V, Brunetti P, Napoli N et al (2015) ABCB1 and ABCB19 auxin transporters have synergistic effects on early and late Arabidopsis anther development. J Integr Plant Biol 57:1089–1098
Yao X, Tian L, Yang J et al (2018) Auxin production in diploid microsporocytes is necessary and sufficient for early stages of pollen development. PLoS Genet 14:e1007397
Cecchetti V, Altamura MM, Falasca G et al (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774
Cecchetti V, Celebrin D, Napoli N et al (2017) An auxin maximum in the middle layer controls stamen development and pollen maturation in Arabidopsis. New Phytol 213:1194–1207
Ghelli R, Brunetti P, Napoli N et al (2018) A newly identified flower-specific splice variant of AUXIN RESPONSE FACTOR8 regulates stamen elongation and endothecium lignification in Arabidopsis. Plant Cell 30:620–637
Feng XL, Ni WM, Elge S et al (2006) Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol Biol 61:215–226
Salinas-Grenet H, Herrera-Vásquez A, Parra S et al (2018) Modulation of auxin levels in pollen grains afects stamen development and anther dehiscence in Arabidopsis. Int J Mol Sci 19:2480
Mitchum MG, Yamaguchi S, Hanada A et al (2006) Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J 45:804–818
Hu J, Mitchum MG, Barnaby N et al (2008) Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20:320–336
Plackett ARG, Thomas SG, Wilson ZA, Hedden P (2011) Gibberellin control of stamen development: a fertile field. Trends Plant Sci 16:568–578
Cheng H, Qin L, Lee S et al (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055–1064
Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721
Plackett ARG, Ferguson AC, Powers SJ et al (2014) DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis. New Phytol 201:825–836
Arnaud N, Girin T, Sorefan K et al (2010) Gibberellins control fruit patterning in Arabidopsis thaliana. Genes Dev 24:2127–2132
Tabata R, Ikezaki M, Fujibe T et al (2010) Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol 51:164–175
Nagpal P, Ellis CM, Weber H et al (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118
Cecchetti V, Altamura MM, Brunetti P et al (2013) Auxin controls arabidopsis anther dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis. Plant J 74:411–422
Grove MD, Spencer GF, Rohwedder WK et al (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217
Szekeres M, Németh K, Koncz-Kálmán Z et al (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182
Bouquin T, Meier C, Foster R et al (2001) Control of specific gene expression by gibberellin and brassinosteroid. Plant Physiol 127:450–458
Ye Q, Zhu W, Li L et al (2010) Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc Natl Acad Sci U S A 107:6100–6105
Higuchi M, Pischke MS, Mahonen AP et al (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci U S A 101:8821–8826
Nishimura C, Ohashi Y, Sato S et al (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16:1365–1377
Jung KW, Oh SI, Kim YY et al (2008) Arabidopsis histidine-containing phosphotransfer factor 4 (AHP4) negatively regulates secondary wall thickening of the anther endothecium during flowering. Mol Cells 25:294–300
Kinoshita-Tsujimura K, Kakimoto T (2011) Cytokinin receptors in sporophytes are essential for male and female functions in Arabidopsis thaliana. Plant Signal Behav 6:66–71
Reyes-Olalde JI, Zuñiga-Mayo VM, Chávez Montes RA et al (2013) Inside the gynoecium: at the carpel margin. Trends Plant Sci 18:644–655
Ballester P, Ferrándiz C (2017) Shattering fruits: variations on a dehiscent theme. Curr Opin Plant Biol 35:68–75
Reyes-Olalde JI, de Folter S (2019) Control of stem cell activity in the carpel margin meristem (CMM) in Arabidopsis. Plant Reprod 32:123–136
Marsch-Martínez N, de Folter S (2016) Hormonal control of the development of the gynoecium. Curr Opin Plant Biol 29:104–114
Marsch-Martínez N, Ramos-Cruz D, Reyes-Olalde JI et al (2012) The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning. Plant J 72:222–234
Larsson E, Roberts CJ, Claes AR et al (2014) Polar auxin transport is essential for medial versus lateral tissue specification and vascular-mediated valve outgrowth in Arabidopsis gynoecia. Plant Physiol 166:1998–2012
Reyes-Olalde JI, Zúñiga-Mayo VM, Serwatowska J et al (2017) The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genet 13:e1006726
Reyes-Olalde JI, Zúñiga-Mayo VM, Marsch-Martínez N, de Folter S (2017) Synergistic relationship between auxin and cytokinin in the ovary and the participation of the transcription factor SPATULA. Plant Signal Behav 12:e1376158
Müller CJ, Larsson E, Spíchal L, Sundberg E (2017) Cytokinin-auxin crosstalk in the gynoecial primordium ensures correct domain patterning. Plant Physiol 175:1144–1157
Zhang K, Wang R, Zi H et al (2018) AUXIN RESPONSE FACTOR3 regulates floral meristem determinacy by repressing cytokinin biosynthesis and signaling. Plant Cell 30:324–346
Yamaguchi N, Huang J, Xu Y et al (2017) Fine-tuning of auxin homeostasis governs the transition from floral stem cell maintenance to gynoecium formation. Nat Commun 8:1125
Yamaguchi N, Huang J, Tatsumi Y et al (2018) Chromatin-mediated feed-forward auxin biosynthesis in floral meristem determinacy. Nat Commun 9:5290
Xu Y, Yamaguchi N, Gan ES, Ito T (2019) When to stop: an update on molecular mechanisms of floral meristem termination. J Exp Bot 70:1711–1718
Moubayidin L, Ostergaard L (2014) Dynamic control of auxin distribution imposes a bilateral-to-radial symmetry switch during gynoecium development. Curr Biol 24:2743–2748
Schuster C, Gaillochet C, Lohmann JU (2015) Arabidopsis HECATE genes function in phytohormone control during gynoecium development. Development 142:3343–3350
Bartrina I, Otto E, Strnad M et al (2011) Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and, thus, seed yield in Arabidopsis thaliana. Plant Cell 23:69–80
Cucinotta M, Manrique S, Guazzotti A et al (2016) Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development. Development 143:4419–4424
Zuñiga-Mayo VM, Baños-Bayardo CR, Díaz-Ramírez D et al (2018) Conserved and novel responses to cytokinin treatments during flower and fruit development in Brassica napus and Arabidopsis thaliana. Sci Rep 8:6836
Barro-Trastoy D, Dolores Gomez M, Tornero P, Perez-Amador MA (2020) On the way to ovules: the hormonal regulation of ovule development. Crit Rev Plant Sci 39:431–456
Cucinotta M, Di Marzo M, Guazzotti A et al (2020) Gynoecium size and ovule number are interconnected traits that impact seed yield. J Exp Bot 71:2479–2489
Cerbantez-Bueno VE, Zúñiga-Mayo VM, Reyes-Olalde JI et al (2020) Redundant and non-redundant functions of the AHK cytokinin receptors during gynoecium development. Front Plant Sci 11:568277
Gómez-Felipe A, Kierzkowski D, de Folter S (2021) The relationship between AGAMOUS and cytokinin signaling in the establishment of carpeloid features. Plan Theory 10:827–836
Rong XF, Sang YL, Wang L et al (2018) Type-B ARRs control carpel regeneration through mediating AGAMOUS expression in Arabidopsis. Plant Cell Physiol 59:761–769
Nemhauser JL, Feldman LJ, Zambryski PC (2000) Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development 127:3877–3888
Nole-Wilson S, Azhakanandam S, Franks RG (2010) Polar auxin transport together with AINTEGUMENTA and REVOLUTA coordinate early Arabidopsis gynoecium development. Dev Biol 346:181–195
Stepanova AN, Robertson-Hoyt J, Yun J et al (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191
Larsson E, Franks RG, Sundberg E (2013) Auxin and the Arabidopsis thaliana gynoecium. J Exp Bot 64:2619–2627
Zúñiga-Mayo VM, Reyes-Olalde JI, Marsch-Martinez N, de Folter S (2014) Cytokinin treatments affect the apical-basal patterning of the Arabidopsis gynoecium and resemble the effects of polar auxin transport inhibition. Front Plant Sci 5:191
Durán-Medina Y, Serwatowska J, Reyes-Olalde JI et al (2017) The AP2/ERF transcription factor DRNL modulates gynoecium development and affects its response to cytokinin. Front Plant Sci 8:1841
Simonini S, Deb J, Moubayidin L et al (2016) A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis. Genes Dev 30:2286–2296
Simonini S, Mas PJ, Mas CMVS et al (2018) Auxin sensing is a property of an unstructured domain in the Auxin Response Factor ETTIN of Arabidopsis thaliana. Sci Rep 8:13563
Cucinotta M, Cavalleri A, Guazzotti A et al (2021) Alternative splicing generates a MONOPTEROS isoform required for ovule development. Curr Biol 31:892–899
Nole-Wilson S, Rueschhoff EE, Bhatti H, Franks RG (2010) Synergistic disruptions in seuss cyp85A2 double mutants reveal a role for brassinolide synthesis during gynoecium and ovule development. BMC Plant Biol 10:198
Huang HY, Jiang WB, Hu YW et al (2013) BR signal influences Arabidopsis ovule and seed number through regulating related genes expression by BZR1. Mol Plant 6:456–469
Barro-Trastoy D, Carrera E, Baños J et al (2020) Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. Plant J 102:1026–1041
Crawford BCW, Yanofsky MF (2011) HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana. Development 138:2999–3009
Vogler F, Schmalzl C, Englhart M et al (2014) Brassinosteroids promote Arabidopsis pollen germination and growth. Plant Reprod 27:153–167
Gomez MD, Barro-Trastoy D, Escoms E et al (2018) Gibberellins negatively modulate ovule number in plants. Development 145:dev163865
Barro-Trastoy D, Gomez MD, Blanco-Touriñán N et al (2022) Gibberellins regulate ovule number through a DELLA–CUC2 complex in Arabidopsis. Plant J 110:43–57
Sorefan K, Girin T, Liljegren SJ et al (2009) A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 459:583–586
van Gelderen K, van Rongen M, Liu A et al (2016) An INDEHISCENT-controlled auxin response specifies the separation layer in early arabidopsis fruit. Mol Plant 9:857–869
Acknowledgements
VMZM research is supported by the Cátedras-CONACyT program, grant number 5016 and Colegio de Postgraduados. Work in the SDF laboratory was financed by the Mexican National Council of Science and Technology (CONACyT) grants CB-2012-177739, FC-2015-2/1061, and CB-2017-2018/A1-S-10126, and NMM and YDM by the CONACyT grant CB-2015-255069. SDF also acknowledges support of the Marcos Moshinsky Foundation and participation in the European Union H2020-MSCA-RISE-2015 project ExpoSEED (grant no. 691109), H2020-MSCA-RISE-2019 project MAD (grant no. 872417), and H2020-MSCA-RISE-2020 project EVOfruland (grant no. 101007738).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Zúñiga-Mayo, V.M., Durán-Medina, Y., Marsch-Martínez, N., de Folter, S. (2023). Hormones and Flower Development in Arabidopsis. In: Riechmann, J.L., Ferrándiz, C. (eds) Flower Development . Methods in Molecular Biology, vol 2686. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3299-4_5
Download citation
DOI: https://doi.org/10.1007/978-1-0716-3299-4_5
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-3298-7
Online ISBN: 978-1-0716-3299-4
eBook Packages: Springer Protocols