Abstract
Understanding the global and dynamic nature of plant developmental processes requires not only the study of the transcriptome, but also of the proteome, including its largely uncharacterized peptidome fraction. Recent advances in proteomics and high-throughput analyses of translating RNAs (ribosome profiling) have begun to address this issue, evidencing the existence of novel, uncharacterized, and possibly functional peptides. To validate the accumulation in tissues of sORF-encoded polypeptides (SEPs), the basic setup of proteomic analyses (i.e., LC-MS/MS) can be followed. However, the detection of peptides that are small (up to ~100 aa, 6–7 kDa) and novel (i.e., not annotated in reference databases) presents specific challenges that need to be addressed both experimentally and with computational biology resources. Several methods have been developed in recent years to isolate and identify peptides from plant tissues. In this chapter, we outline two different peptide extraction protocols and the subsequent peptide identification by mass spectrometry using the database search or the de novo identification methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammuea BPA (2015) The plant peptidome: an expanding repertoire of structural features and biological functions. Plant Cell 27(8):2095–2118
Hsu PY, Benfey PN (2018) Small but mighty: functional peptides encoded by small ORFs in plants. Proteomics 18:1700038
Brunet MA, Leblanc S, Roucou X (2020) Reconsidering proteomic diversity with functional investigation of small ORFs and alternative ORFs. Exp Cell Res 393(1):112057
Brunet MA, Levesque SA, Hunting DJ, Cohen AA, Roucou X (2018) Recognition of the polycistronic nature of human genes is critical to understanding the genotype-phenotype relationship. Genome Res 28(5):609–624
Mudge JM, Ruiz-Orera J, Prensner JR, Brunet MA, Calvet F, Jungreis I et al (2022) Standardized annotation of translated open reading frames. Nat Biotechnol 40(7):994–999
Lyapina I, Ivanov V, Fesenko I (2021) Peptidome: chaos or inevitability. Int J Mol Sci 22:13128
Hellens RP, Brown CM, Chisnall MAW, Waterhouse PM, Macknight RC (2016) The emerging world of small ORFs. Trends Plant Sci 21(4):317–328
Takahashi F, Hanada K, Kondo T, Shinozaki K (2019) Hormone-like peptides and small coding genes in plant stress signaling and development. Curr Opin Plant Biol 51:88–95
Andrews SJ, Rothnagel JA (2014) Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 15(3):193–204
Couso JP, Patraquim P (2017) Classification and function of small open reading frames. Nat Rev Mol Cell Biol 18(9):575–589
Plaza S, Menschaert G, Payre F (2017) In search of lost small peptides. Annu Rev Cell Dev Biol 33:391–416
Wright BW, Yi Z, Weissman JS, Chen J (2022) The dark proteome: translation from noncanonical open reading frames. Trends Cell Biol 32(3):243–258
Orr MW, Mao Y, Storz G, Qian SB (2021) Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Res 48(3):1029–1042
Ruiz-Orera J, Hernandez-Rodriguez J, Chiva C, Sabidó E, Kondova I, Bontrop R et al (2015) Origins of de novo genes in human and chimpanzee. PLoS Genet 11(12):e1005721
Ruiz-Orera J, Verdaguer-Grau P, Villanueva-Cañas JL, Messeguer X, Albà MM (2018) Translation of neutrally evolving peptides provides a basis for de novo gene evolution. Nat Ecol Evol 2(5):890–896
Ruiz-Orera J, Albà MM (2019) Translation of small open reading frames: roles in regulation and evolutionary innovation. Trends Genet 35(3):186–198
Ruiz-Orera J, Villanueva-Cañas JL, Albà MM (2020) Evolution of new proteins from translated sORFs in long non-coding RNAs. Exp Cell Res 391(1):111940
Blevins WR, Ruiz-Orera J, Messeguer X, Blasco-Moreno B, Villanueva-Cañas JL, Espinar L et al (2021) Uncovering de novo gene birth in yeast using deep transcriptomics. Nat Commun 12(1):604
Fesenko I, Shabalina SA, Mamaeva A, Knyazev A, Glushkevich A, Lyapina I et al (2021) A vast pool of lineage-specific microproteins encoded by long non-coding RNAs in plants. Nucleic Acids Res 49(18):10328–10346
Goto H, Okuda S, Mizukami A, Mori H, Sasaki N, Kurihara D et al (2011) Chemical visualization of an attractant peptide, LURE. Plant Cell Physiol 52(1):49–58
Santiago J, Brandt B, Wildhagen M, Hohmann U, Hothorn LA, Butenko MA et al (2016) Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. eLife 5:e15075
Covey PA, Subbaiah CC, Parsons RL, Pearce G, Lay FT, Anderson MA et al (2019) A pollen-specific RALF from tomato that regulates pollen tube elongation. Plant Physiol 153:703–715
Hsu PY, Calviello L, Wu HYL, Li FW, Rothfels CJ, Ohler U et al (2016) Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proc Natl Acad Sci U S A 113(45):E7126–E7135
Juntawong P, Girke T, Bazin J, Bailey-Serres J (2014) Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc Natl Acad Sci U S A 111(1):E203–E212
Bazin J, Baerenfaller K, Gosai SJ, Gregory BD, Crespi M, Bailey-Serres J (2017) Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. Proc Natl Acad Sci U S A 114(46):E10018–E10027
Slavoff SA, Mitchell AJ, Schwaid AG, Cabili MN, Ma J, Levin JZ et al (2013) Peptidomic discovery of short open reading frame-encoded peptides in human cells. Nat Chem Biol 9(1):59–64
Vanderperre B, Lucier JF, Bissonnette C, Motard J, Tremblay G, Vanderperre S et al (2013) Direct detection of alternative open reading frames translation products in human significantly expands the proteome. PLoS One 8(8):e70698
Aspden JL, Eyre-Walker YC, Phillips RJ, Amin U, Mumtaz MAS, Brocard M et al (2014) Extensive translation of small open reading frames revealed by poly-ribo-seq. eLife 3:e03528
Huang JZ, Chen M, Chen D, Gao XC, Zhu S, Huang H et al (2017) A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol Cell 68(1):171–184
Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD, Wu F et al (2016) A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science 351:271–275
Makarewich CA, Baskin KK, Munir AZ, Bezprozvannaya S, Sharma G, Khemtong C et al (2018) MOXI is a mitochondrial micropeptide that enhances fatty acid β-oxidation. Cell Rep 23(13):3701–3709
Prensner JR, Enache OM, Luria V, Krug K, Clauser KR, Dempster JM et al (2021) Noncanonical open reading frames encode functional proteins essential for cancer cell survival. Nat Biotechnol 39(6):697–704
Boix O, Martinez M, Vidal S, Giménez-Alejandre M, Palenzuela L, Lorenzo-Sanz L et al (2022) pTINCR microprotein promotes epithelial differentiation and suppresses tumor growth through CDC42 SUMOylation and activation. Nat Commun 13(1):6840
Lin MF, Jungreis I, Kellis M (2011) PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 27(13):i275–i282
Hanada K, Zhang X, Borevitz JO, Li WH, Shiu SH (2007) A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res 17(5):632–640
Miravet-Verde S, Ferrar T, Espadas-García G, Mazzolini R, Gharrab A, Sabido E et al (2019) Unraveling the hidden universe of small proteins in bacterial genomes. Mol Syst Biol 15(2):e8290
Hanada K, Higuchi-Takeuchi M, Okamoto M, Yoshizumi T, Shimizu M, Nakaminami K et al (2013) Small open reading frames associated with morphogenesis are hidden in plant genomes. Proc Natl Acad Sci U S A 110(6):2395–2400
Wang S, Tian L, Liu H, Li X, Zhang J, Chen X et al (2020) Large-scale discovery of non-conventional peptides in maize and Arabidopsis through an integrated peptidogenomic pipeline. Mol Plant 13(7):1078–1093
Hazarika RR, De Coninck B, Yamamoto LR, Martin LR, Cammue BPA, Van Noort V (2017) ARA-PEPs: a repository of putative SORF-encoded peptides in Arabidopsis thaliana. BMC Bioinformatics 18(1):37
Couzigou J-M, Lauressergues D, Bécard G, Combier J-P, Ecard GB (2015) miRNA-encoded peptides (miPEPs): a new tool to analyze the roles of miRNAs in plant biology. RNA Biol 12:1178–1180
Ruiz-Orera J, Messeguer X, Subirana JA, Alba MM (2014) Long non-coding RNAs as a source of new peptides. eLife 3:e03523
Hartford CCR, Lal A (2020) When long noncoding becomes protein coding. Mol Cell Biol 40(6):e00528–e00519
Kurihara Y, Makita Y, Shimohira H, Fujita T, Iwasaki S, Matsui M (2020) Translational landscape of protein-coding and non-protein-coding RNAs upon light exposure in Arabidopsis. Plant Cell Physiol 61(3):536–545
Liang Y, Zhu W, Chen S, Qian J, Li L (2021) Genome-wide identification and characterization of small peptides in maize. Front Plant Sci 12:695439
Wu HYL, Song G, Walley JW, Hsu PY (2019) The tomato translational landscape revealed by transcriptome assembly and ribosome profiling. Plant Physiol 181(1):367–380
Mergner J, Frejno M, List M, Papacek M, Chen X, Chaudhary A et al (2020) Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 579:409–414
Wang P, Yao S, Kosami K-I, Guo T, Li J, Zhang Y et al (2020) Identification of endogenous small peptides involved in rice immunity through transcriptomics-and proteomics-based screening. Plant Biotechnol J 18:415–428
Jorge GL, Balbuena TS (2021) Identification of novel protein-coding sequences in Eucalyptus grandis plants by high-resolution mass spectrometry. Biochim Biophys Acta Proteins Proteom 1869:140594
Fesenko I, Kirov I, Kniazev A, Khazigaleeva R, Lazarev V, Kharlampieva D et al (2019) Distinct types of short open reading frames are translated in plant cells. Genome Res 29(9):1464–1477
Ouspenskaia T, Law T, Clauser KR, Klaeger S, Sarkizova S, Aguet F et al (2021) Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nat Biotechnol 40:209–217
Chen J, Brunner AD, Cogan JZ, Nuñez JK, Fields AP, Adamson B et al (2020) Pervasive functional translation of noncanonical human open reading frames. Science 367:140–146
Ma J, Ward CC, Jungreis I, Slavoff SA, Schwaid AG, Neveu J et al (2014) Discovery of human sORF-encoded polypeptides (SEPs) in cell lines and tissue. J Proteome Res 13(3):1757–1765
Flower CT, Chen L, Jung HJ, Raghuram V, Knepper MA, Yang CR (2020) Genetic and genomics investigation of structure and function of the kidney: an integrative proteogenomics approach reveals peptides encoded by annotated lincRNA in the mouse kidney inner medulla. Physiol Genomics 52(10):485
Luo W, Xiao Y, Liang Q, Su Y, Xiao L (2019) Identification of potential auxin-responsive small signaling peptides through a peptidomics approach in arabidopsis thaliana. Molecules 24:3146
Barashkova AS, Rogozhin EA (2020) Isolation of antimicrobial peptides from different plant sources: does a general extraction method exist? Plant Methods 16:143
Damerval C, De Vienne D, Zivy M, Thiellement H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7(1):52–54
Chatterjee M, Gupta S, Bhar A, Das S (2012) Optimization of an efficient protein extraction protocol compatible with two-dimensional electrophoresis and mass spectrometry from recalcitrant phenolic rich roots of chickpea (Cicer arietinum L.). Int J Proteomics 2012:536963
Shi Y, Li J, Li L, Lin G, Bilal AM, Smagghe G et al (2021) Genomics, transcriptomics, and peptidomics of Spodoptera frugiperda (Lepidoptera, Noctuidae) neuropeptides. Arch Insect Biochem Physiol 106:e21740
Culver KD, Allen JL, Shaw LN, Hicks LM (2021) Too hot to handle: antibacterial peptides identified in ghost pepper. J Nat Prod 84:2200–2208
Kuljanin M, Dieters-Castator DZ, Hess DA, Postovit L-M, Lajoie GA (2017) Comparison of sample preparation techniques for large-scale proteomics. Proteomics 17(1–2):1600337
Flower CT, Chen L, Jung HJ, Raghuram V, Knepper MA, Yang C-R (2020) An integrative proteogenomics approach reveals peptides encoded by annotated lincRNA in the mouse kidney inner medulla. Physiol Genomics 52:485–491
Cao S, Liu X, Huang Y, Yan Y, Zhou C, Shao C et al (2021) Proteogenomic discovery of sORF-encoded peptides associated with bacterial virulence in Yersinia pestis. Commun Biol 4:1248
Grossmann J, Roschitzki B, Panse C, Fortes C, Barkow-Oesterreicher S, Rutishauser D et al (2010) Implementation and evaluation of relative and absolute quantification in shotgun proteomics with label-free methods. J Proteome 73(9):1740–1746
Eng JK, Mccormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:977–989
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probablity-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3557
Colinge J, Masselot A, Giron M, Dessingy T, Magnin J (2003) OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics 3(8):1454–1463
Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9):1466–1467
Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM et al (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964
Fu Y, Yang Q, Sun R, Li D, Zeng R, Ling CX et al (2004) Exploiting the kernel trick to correlate fragment ions for peptide identification via tandem mass spectrometry. Bioinformatics 20(12):1948–1954
Tanner S, Shu H, Frank A, Wang LC, Zandi E, Mumby M et al (2005) InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. Anal Chem 77(14):4626–4639
Bern M, Cai Y, Goldberg D (2007) Lookup peaks: a hybrid of de novo sequencing and database search for protein identification by tandem mass spectrometry. Anal Chem 79(4):1393–1400
Eng JK, Jahan TA, Hoopmann MR (2013) Comet: an open-source MS/MS sequence database search tool. Proteomics 13(1):22–24
Kim S, Pevzner PA (2014) MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun 5(1):5277
Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11(12):2301–2319
Zeng X, Ma B (2021) MSTracer: a machine learning software tool for peptide feature detection from liquid chromatography-mass spectrometry data. J Proteome Res 20(7):3455–3462
Hanada K, Akiyama K, Sakurai T, Toyoda T, Shinozaki K, Shiu S-H (2010) sORF finder: a program package to identify small open reading frames with high coding potential. Bioinformatics 26(3):399–400
Yang X, Jensen SI, Wulff T, Harrison SJ, Long KS (2016) Identification and validation of novel small proteins in Pseudomonas putida. Environ Microbiol Rep 8(6):966–674
Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A et al (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17:2337–2342
Han Y, Ma B, Zhang K (2005) Spider: software for protein identification from sequence tags with de novo sequencing error. J Bioinforma Comput Biol 3(3):697–716
Jeong K, Kim S, Pevzner PA (2013) UniNovo: a universal tool for de novo peptide sequencing. Bioinformatics 29(16):1953–1962
Chi H, Chen H, He K, Wu L, Yang B, Sun R-X et al (2013) pNovo+: de novo peptide sequencing using complementary HCD and ETD tandem mass spectra. J Proteome Res 12:615–625
Ma B (2015) Novor: real-time peptide de novo sequencing software. J Am Soc Mass Spectrom 26:1885–1894
Tran NH, Zhang X, Xin L, Shan B, Li M (2017) De novo peptide sequencing by deep learning. Proc Natl Acad Sci U S A 114(31):8247–8252
Tran NH, Qiao R, Xin L, Chen X, Liu C, Zhang X et al (2019) Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry. Nat Methods 16(1):63–66
Pathan M, Samuel M, Keerthikumar S, Mathivanan S (2017) Unassigned MS/MS spectra: who am I? In: Keerthikumar S, Mathivanan S (eds) Proteome bioinformatics. Methods in molecular biology, vol 1549. Humana Press, New York, pp 67–74
Muth T, Renard BY (2018) Evaluating de novo sequencing in proteomics: already an accurate alternative to database-driven peptide identification? Brief Bioinform 19(5):954–970
Wu H, Johnson MC, Lu CH, Fritsche KL, Thomas AL, Lai Y et al (2015) Peptidomics study of anthocyanin-rich juice of elderberry. Talanta 131:640–644
Gemperline E, Keller C, Jayaraman D, Maeda J, Sussman MR, Ané J-MA et al (2016) Examination of endogenous peptides in Medicago truncatula using mass spectrometry imaging. J Proteome Res 15:4403–4411
Gemperline E, Keller C, Li L (2016) Mass spectrometry in plant-omics. Anal Chem 88(7):3422–3434
Ye X, Zhao N, Yu X, Han X, Gao H, Zhang X (2016) Extensive characterization of peptides from Panax ginseng C. A. Meyer using mass spectrometric approach. Proteomics 16:2788–2791
Zhang K, Mckinlay C, Hocart CH, Djordjevic MA (2006) The Medicago truncatula small protein proteome and peptidome. J Proteome Res 12:3355–3367
Wang X, Li Y, Wu Z, Wang H, Tan H, Peng J (2014) JUMP: a tag-based database search tool for peptide identification with high sensitivity and accuracy. Mol Cell Proteomics 13(12):3663–3673
Röst HL, Rosenberger G, Navarro P, Gillet L, Miladinović SM, Schubert OT et al (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32:219–223
Wilhelm M, Zolg DP, Graber M, Gessulat S, Schmidt T, Schnatbaum K et al (2021) Deep learning boosts sensitivity of mass spectrometry-based immunopeptidomics. Nat Commun 12:3346
Gessulat S, Schmidt T, Zolg DP, Samaras P, Schnatbaum K, Zerweck J et al (2019) Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning. Nat Methods 16:509–518
Ekvall M, Truong P, Gabriel W, Wilhelm M, Käll L (2022) Prosit transformer: a transformer for prediction of MS2 spectrum intensities. J Proteome Res 21(5):1359–1364
Gabriels R, Martens L, Degroeve S (2019) Updated MS2PIP web server delivers fast and accurate MS2 peak intensity prediction for multiple fragmentation methods, instruments and labeling techniques. Nucleic Acids Res 47(W1):W295–W299
Beer LA, Liu P, Ky B, Barnhart KT, Speicher DW (2017) Efficient quantitative comparisons of plasma proteomes using label-free analysis with MaxQuant. Methods Mol Biol 1619:339–352
Gerster S, Kwon T, Ludwig C, Matondo M, Vogel C, Marcotte EM et al (2014) Statistical approach to protein quantification. Mol Cell Proteomics 13(2):666–677
Fabre B, Lambour T, Bouyssié D, Menneteau T, Monsarrat B, Burlet-Schiltz O et al (2014) Comparison of label-free quantification methods for the determination of protein complexes subunits stoichiometry. EuPA Open Proteom 4:82–86
Yeung YG, Stanley ER (2010) Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. Curr Protoc Protein Sci 16(16):12
Michel AM, Fox G, Kiran A M, De Bo C, O’Connor PBF, Heaphy SM et al (2014) GWIPS-viz: development of a ribo-seq genome browser. Nucleic Acids Res 42:D859–D864
Wang H, Yang L, Wang Y, Chen L, Li H, Xie Z (2019) RPFdb v2.0: an updated database for genome-wide information of translated mRNA generated from ribosome profiling. Nucleic Acids Res 47:D230–D234
Chen Y, Li D, Fan W, Zheng X, Zhou Y, Ye H et al (2020) PsORF: a database of small ORFs in plants. Plant Biotechnol J 18:2158–2160
Wethmar K, Barbosa-Silva A, Andrade-Navarro MA, Leutz A (2014) uORFdb--a comprehensive literature database on eukaryotic uORF biology. Nucleic Acids Res 42:D60–D67
Calviello L, Mukherjee N, Wyler E, Zauber H, Hirsekorn A, Selbach M et al (2016) Detecting actively translated open reading frames in ribosome profiling data. Nat Methods 13(2):165–170
Erhard F, Halenius A, Zimmermann C, L’Hernault A, Kowalewski DJ, Weekes MP et al (2018) Improved Ribo-seq enables identification of cryptic translation events. Nat Methods 15(5):363–366
Xiao Z, Huang R, Xing X, Chen Y, Deng H, Yang X (2018) De novo annotation and characterization of the translatome with ribosome profiling data. Nucleic Acids Res 46(10):e61
Perkins P, Mazzoni-Putman S, Stepanova A, Alonso J, Heber S (2019) RiboStreamR: a web application for quality control, analysis, and visualization of Ribo-seq data. BMC Genomics 20:422
Larry Wu H-Y, Yingshan Hsu P (2021) RiboPlotR: a visualization tool for periodic Ribo-seq reads. Plant Methods 17:124
Song B, Jiang M, Gao L (2021) RiboNT: a noise-tolerant predictor of open reading frames from ribosome-protected footprints. Life (Basel) 11(7):701
Zhou P, Silverstein KAT, Gao L, Walton JD, Nallu S, Guhlin J et al (2013) Detecting small plant peptides using SPADA (small peptide alignment discovery application). BMC Bioinformatics 14(1):335
Zhu M, Gribskov M (2019) MiPepid: MicroPeptide identification tool using machine learning. BMC Bioinformatics 20(1):559
Tong X, Hong X, Xie J, Liu S (2020) CPPred-sORF: coding potential prediction of sORF based on non-AUG. bioRxiv. https://doi.org/10.1101/2020.03.31.017525
Zhao S, Meng J, Luan Y (2022) LncRNA-encoded short peptides identification using feature subset recombination and ensemble learning. Interdiscip Sci 14(1):101–112
Zhang Y, Jia C, Fullwood MJ, Kwoh CK (2021) DeepCPP: a deep neural network based on nucleotide bias information and minimum distribution similarity feature selection for RNA coding potential prediction. Brief Bioinform 22(2):2073–2084
Kersten RD, Yang Y, Xu Y, Cimermancic P, Nam S-J, Fenical W et al (2011) A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat Chem Biol 7(11):794–802
Cao X, Slavoff SA (2020) Non-AUG start codons: expanding and regulating the small and alternative ORFeome. Exp Cell Res 391(1):111973
Na CH, Barbhuiya MA, Kim MS, Verbruggen S, Eacker SM, Pletnikova O et al (2018) Discovery of noncanonical translation initiation sites through mass spectrometric analysis of protein N termini. Genome Res 28(1):25–36
Li YR, Liu MJ (2020) Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants. Genome Res 30(10):1418–1433
Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S et al (2022) The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50(D1):D543–D552
Patel N, Mohd-Radzman NA, Corcilius L, Crossett B, Connolly A, Cordwell SJ et al (2018) Diverse peptide hormones affecting root growth identified in the Medicago truncatula secreted peptidome. Mol Cell Proteomics 17(1):160–174
Chen YL, Lee CY, Cheng KT, Chang WH, Huang RN, Nam HG et al (2014) Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. Plant Cell 26(10):4135–4148
Das D, Jaiswal M, Khan FN, Ahamad S, Kumar S (2020) PlantPepDB: a manually curated plant peptide database. Sci Rep 10(1):2194
Szcześniak MW, Bryzghalov O, Ciomborowska-Basheer J, Makałowska I (2019) CANTATAdb 2.0: expanding the collection of plant long noncoding RNAs. In: Chekanova JA, Wang HLV (eds) Plant long non-coding RNAs, Methods in molecular biology, vol 1933. Humana Press, New York, pp 415–429
Singh A, Vivek AT, Kumar S (2021) AlnC: an extensive database of long non-coding RNAs in angiosperms. PLoS One 16(4):e0247215
Niu R, Zhou Y, Zhang Y, Mou R, Tang Z, Wang Z et al (2020) uORFlight: a vehicle toward uORF-mediated translational regulation mechanisms in eukaryotes. Database 2020:baaa007
Niarchou A, Alexandridou A, Athanasiadis E, Spyrou G (2013) C-PAmP: large scale analysis and database construction containing high scoring computationally predicted antimicrobial peptides for all the available plant species. PLoS One 8(11):e79728
Wang J, Yin T, Xiao X, He D, Xue Z, Jiang X et al (2018) StraPep: a structure database of bioactive peptides. Database 2018:bay038
Shi G, Kang X, Dong F, Liu Y, Zhu N, Hu Y et al (2022) DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res 50(D1):D488–D496
Boschiero C, Dai X, Lundquist PK, Roy S, de Bang TC, Zhang S et al (2020) MtSSPdb: the Medicago truncatula small secreted peptide database. Plant Physiol 183(1):399–413
Lin X, Lin W, Ku YS, Wong FL, Li MW, Lam HM et al (2020) Analysis of soybean long non-coding RNAs reveals a subset of small peptide-coding transcripts. Plant Physiol 182(3):1359–1374
Acknowledgments
Our work on peptidomics was supported by grant BFU2014-58289-P (funded by MICIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe”) and by grant 2017SGR718 (from the Agencia de Gestió d’Ajuts Universitaris I de Recerca) to JLR, and by institutional grant SEV-2015-0533 (funded by MCIN/AEI/10.13039/501100011033) and by the CERCA Programme/Generalitat de Catalunya. R.A. is supported by fellowship PRE2018-084278 funded by MCIN/AEI/10.13039/501100011033 and by “ESF Investing in your future.” The CRG/UPF Proteomics Unit is part of the Spanish Infrastructure for Omics Technologies (ICTS OmicsTech). We also acknowledge “Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya” (2017SGR595) and support of the Spanish Ministry of Science and Innovation to the EMBL partnership, the Centro de Excelencia Severo Ochoa, and the CERCA Programme/Generalitat de Catalunya.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Álvarez-Urdiola, R., Borràs, E., Valverde, F., Matus, J.T., Sabidó, E., Riechmann, J.L. (2023). Peptidomics Methods Applied to the Study of Flower Development. In: Riechmann, J.L., Ferrándiz, C. (eds) Flower Development . Methods in Molecular Biology, vol 2686. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3299-4_24
Download citation
DOI: https://doi.org/10.1007/978-1-0716-3299-4_24
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-3298-7
Online ISBN: 978-1-0716-3299-4
eBook Packages: Springer Protocols