Skip to main content

Flower Development in Arabidopsis

  • Protocol
  • First Online:
Flower Development

Abstract

Like in other angiosperms, the development of flowers in Arabidopsis starts right after the floral transition, when the shoot apical meristem (SAM) stops producing leaves and makes flowers instead. On the flanks of the SAM emerge the flower meristems (FM) that will soon differentiate into the four main floral organs, sepals, petals, stamens, and pistil, stereotypically arranged in concentric whorls. Each phase of flower development—floral transition, floral bud initiation, and floral organ development—is under the control of specific gene networks. In this chapter, we describe these different phases and the gene regulatory networks involved, from the floral transition to the floral termination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Quiroz S et al (2021) Beyond the genetic pathways, flowering regulation complexity in Arabidopsis thaliana. Int J Mol Sci 22:5716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wigge PA et al (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  CAS  PubMed  Google Scholar 

  3. Jaeger KE, Wigge PA (2007) FT protein acts as a long-range signal in Arabidopsis. Curr Biol 17:1050–1054

    Article  CAS  PubMed  Google Scholar 

  4. Wigge PA, Thomas D (2011) FT, a mobile developmental signal in plants. Curr Biol 21:R374–R378

    Article  CAS  PubMed  Google Scholar 

  5. Denay G, Chahtane H, Tichtinsky G, Parcy F (2017) A flower is born: an update on Arabidopsis floral meristem formation. Curr Opin Plant Biol 35:15–22

    Article  PubMed  Google Scholar 

  6. Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ 35:1742–1755

    Article  CAS  PubMed  Google Scholar 

  7. Susila H, Nasim Z, Ahn JH (2018) Ambient temperature-responsive mechanisms coordinate regulation of flowering time. Int J Mol Sci 19:3196

    Article  PubMed  PubMed Central  Google Scholar 

  8. Antoniou-Kourounioti RL, Zhao Y, Dean C, Howard M (2021) Feeling every bit of winter – distributed temperature sensitivity in vernalization. Front Plant Sci 12:628726

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jin S, Ahn JH (2021) Regulation of flowering time by ambient temperature: repressing the repressors and activating the activators. New Phytol 230:938–942

    Article  CAS  PubMed  Google Scholar 

  10. Brightbill CM, Sung S (2022) Temperature-mediated regulation of flowering time in Arabidopsis thaliana. aBIOTECH 3:78–84

    Article  PubMed  PubMed Central  Google Scholar 

  11. Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deng W et al (2011) FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc Natl Acad Sci U S A 108:6680–6685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li M et al (2016) DELLA proteins interact with FLC to repress flowering transition. J Integr Plant Biol 58:642–655

    Article  CAS  PubMed  Google Scholar 

  14. Sung S, Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159–164

    Article  CAS  PubMed  Google Scholar 

  15. Whittaker C, Dean C (2017) The FLC locus: a platform for discoveries in epigenetics and adaptation. Annu Rev Cell Dev Biol 33:555–575

    Article  CAS  PubMed  Google Scholar 

  16. Hepworth J, Dean C (2015) Flowering locus C’s lessons: conserved chromatin switches underpinning developmental timing and adaptation. Plant Physiol 168:1237–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799–802

    Article  CAS  PubMed  Google Scholar 

  18. Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79

    Article  CAS  PubMed  Google Scholar 

  19. Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    Article  CAS  PubMed  Google Scholar 

  20. Andres F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639

    Article  CAS  PubMed  Google Scholar 

  21. Marquardt S et al (2014) Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription. Mol Cell 54:156–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Susila H et al (2021) Florigen sequestration in cellular membranes modulates temperature-responsive flowering. Science 373:1137–1142

    Article  CAS  PubMed  Google Scholar 

  23. Jaillais Y, Parcy F (2021) Lipid-mediated regulation of flowering time. Science 373:1086–1087

    Article  CAS  PubMed  Google Scholar 

  24. Lee JH et al (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li D et al (2008) A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 15:110–120

    Article  CAS  PubMed  Google Scholar 

  26. Melzer R (2017) Regulation of flowering time: a splicy business. J Exp Bot 68:5017–5020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pose D et al (2013) Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503:414–417

    Article  CAS  PubMed  Google Scholar 

  28. Capovilla G, Symeonidi E, Wu R, Schmid M (2017) Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana. J Exp Bot 68:5117–5127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jin S et al (2022) FLOWERING LOCUS M isoforms differentially affect the subcellular localization and stability of SHORT VEGETATIVE PHASE to regulate temperature-responsive flowering in Arabidopsis. Mol Plant 15:1696–1709

    Article  CAS  PubMed  Google Scholar 

  30. Lee JH et al (2013) Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science 342:628–632

    Article  CAS  PubMed  Google Scholar 

  31. Kumar SV et al (2012) Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484:242–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sakamoto T, Kimura S (2018) Plant temperature sensors. Sensors 18:4365

    Article  PubMed  PubMed Central  Google Scholar 

  33. Han X et al (2019) Arabidopsis transcription factor TCP5 controls plant thermomorphogenesis by positively regulating PIF4 activity. iScience 15:611–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tasset C et al (2018) POWERDRESS-mediated histone deacetylation is essential for thermomorphogenesis in Arabidopsis thaliana. PLoS Genet 14:e1007280

    Article  PubMed  PubMed Central  Google Scholar 

  35. Reed JW et al (2000) Independent action of ELF3 and phyB to control hypocotyl elongation and flowering time. Plant Physiol 122:1149–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song YH et al (2018) Molecular basis of flowering under natural long-day conditions in Arabidopsis. Nat Plants 4:824–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Box MS et al (2015) ELF3 controls thermoresponsive growth in Arabidopsis. Curr Biol 25:194–199

    Article  CAS  PubMed  Google Scholar 

  38. Ezer D et al (2017) The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat Plants 3:17087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Silva CS et al (2020) Molecular mechanisms of evening complex activity in Arabidopsis. Proc Natl Acad Sci U S A 117:6901–6909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jung J-H et al (2020) A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585:256–260

    Article  CAS  PubMed  Google Scholar 

  41. Shim JS, Kubota A, Imaizumi T (2017) Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiol 173:5–15

    Article  CAS  PubMed  Google Scholar 

  42. Valverde F et al (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006

    Article  CAS  PubMed  Google Scholar 

  43. Jang S et al (2008) Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J 27:1277–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci 18:575–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu J-W et al (2008) COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell 32:617–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yin R, Ulm R (2017) How plants cope with UV-B: from perception to response. Curr Opin Plant Biol 37:42–48

    Article  CAS  PubMed  Google Scholar 

  47. Arongaus AB et al (2018) Arabidopsis RUP2 represses UVR8-mediated flowering in noninductive photoperiods. Genes Dev 32:1332–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lunn JE et al (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397:139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gomez LD, Gilday A, Feil R, Lunn JE, Graham IA (2010) AtTPS1-mediated trehalose 6-phosphate synthesis is essential for embryogenic and vegetative growth and responsiveness to ABA in germinating seeds and stomatal guard cells. Plant J 64:1–13

    CAS  PubMed  Google Scholar 

  50. Wahl V et al (2013) Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339:704–707

    Article  CAS  PubMed  Google Scholar 

  51. Olas JJ et al (2019) Nitrate acts at the Arabidopsis thaliana shoot apical meristem to regulate flowering time. New Phytol 223:814–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138:4117–4129

    Article  CAS  PubMed  Google Scholar 

  53. Hyun Y, Richter R, Coupland G (2017) Competence to flower: age-controlled sensitivity to environmental cues. Plant Physiol 173:36–46

    Article  CAS  PubMed  Google Scholar 

  54. Xu M et al (2016) Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genet 12:e1006263

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang J, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    Article  CAS  PubMed  Google Scholar 

  56. Ó’Maoiléidigh DS et al (2021) Systematic analyses of the MIR172 family members of Arabidopsis define their distinct roles in regulation of APETALA2 during floral transition. PLoS Biol 19:e3001043

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhang B, Wang L, Zeng L, Zhang C, Ma H (2015) Arabidopsis TOE proteins convey a photoperiodic signal to antagonize CONSTANS and regulate flowering time. Genes Dev 29:975–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yamaguchi A et al (2009) The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell 17:268–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou C-M et al (2013) Molecular basis of age-dependent vernalization in Cardamine flexuosa. Science 340:1097–1100

    Article  CAS  PubMed  Google Scholar 

  60. Bergonzi S et al (2013) Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science 340:1094–1097

    Article  CAS  PubMed  Google Scholar 

  61. Collani S, Neumann M, Yant L, Schmid M (2019) FT modulates genome-wide DNA-binding of the bZIP transcription factor FD. Plant Physiol 180:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee J, Oh M, Park H, Lee I (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Plant J 55:832–843

    Article  CAS  PubMed  Google Scholar 

  63. Kaufmann K et al (2010) Orchestration of floral initiation by APETALA1. Science 328:85–89

    Article  CAS  PubMed  Google Scholar 

  64. Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11:1007–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Abe M et al (2019) Transient activity of the florigen complex during the floral transition in Arabidopsis thaliana. Development 146:dev171504

    Article  CAS  PubMed  Google Scholar 

  66. Wang Y, Jiao Y (2018) Auxin and above-ground meristems. J Exp Bot 69:147–154

    Article  CAS  PubMed  Google Scholar 

  67. Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bennett SRM, Alvarez J, Bossinger G, Smyth DR (1995) Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J 8:505–520

    Article  CAS  Google Scholar 

  69. Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Reinhardt D et al (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  CAS  PubMed  Google Scholar 

  71. Jonsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci U S A 103:1633–1638

    Article  PubMed  PubMed Central  Google Scholar 

  72. Smith RS et al (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci U S A 103:1301–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Truskina J, Vernoux T (2018) The growth of a stable stationary structure: coordinating cell behavior and patterning at the shoot apical meristem. Curr Opin Plant Biol 41:83–88

    Article  PubMed  Google Scholar 

  74. Besnard F et al (2014) Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature 505:417–421

    Article  CAS  PubMed  Google Scholar 

  75. Zhao Y (2018) Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annu Rev Plant Biol 69:417–435

    Article  CAS  PubMed  Google Scholar 

  76. Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Petrasek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    Article  CAS  PubMed  Google Scholar 

  78. Benkova E et al (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  CAS  PubMed  Google Scholar 

  79. Christensen SK, Dagenais N, Chory J, Weigel D (2000) Regulation of auxin response by the protein kinase PINOID. Cell 100:469–478

    Article  CAS  PubMed  Google Scholar 

  80. Michniewicz M et al (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056

    Article  CAS  PubMed  Google Scholar 

  81. Zourelidou M et al (2014) Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. Elife 3:e02860

    Article  PubMed  PubMed Central  Google Scholar 

  82. Furutani M, Nakano Y, Tasaka M (2014) MAB4-induced auxin sink generates local auxin gradients in Arabidopsis organ formation. Proc Natl Acad Sci U S A 111:1198–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Leyser O (2018) Auxin signaling. Plant Physiol 176:465–479

    Article  CAS  PubMed  Google Scholar 

  84. Przemeck GK, Mattsson J, Hardtke CS, Sung ZR, Berleth T (1996) Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200:229–237

    Article  CAS  PubMed  Google Scholar 

  85. Cole M et al (2009) DORNROSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo. Development 136:1643–1651

    Article  CAS  PubMed  Google Scholar 

  86. Bhatia N et al (2016) Auxin acts through MONOPTEROS to regulate plant cell polarity and pattern phyllotaxis. Curr Biol 26:3202–3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yamaguchi N et al (2013) A molecular framework for auxin-mediated initiation of flower primordia. Dev Cell 24:271–282

    Article  CAS  PubMed  Google Scholar 

  88. Blazquez MA, Soowal LN, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124:3835–3844

    Article  CAS  PubMed  Google Scholar 

  89. Krizek B (2009) AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning. Plant Physiol 150:1916–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Long J, Barton MK (2000) Initiation of axillary and floral meristems in Arabidopsis. Dev Biol 218:341–353

    Article  CAS  PubMed  Google Scholar 

  91. Wu MF et al (2015) Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. Elife 4:e09269

    Article  PubMed  PubMed Central  Google Scholar 

  92. Krizek BA (2011) Aintegumenta and Aintegumenta-Like6 regulate auxin-mediated flower development in Arabidopsis. BMC Res Notes 4:176

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ezhova TA, Soldatova OP, Kalinina AI, Medvedev SS (2000) Interaction of ABRUPTUS/PINOID and LEAFY genes during floral morphogenesis in Arabidopsis thaliana (L) Heynh. Genetika 36:1682–1687

    CAS  PubMed  Google Scholar 

  94. Yamaguchi N, Wu M-F, Winter CM, Wagner D (2014) LEAFY and polar auxin transport coordinately regulate Arabidopsis flower development. Plants 3:251–265

    Article  PubMed  PubMed Central  Google Scholar 

  95. Yamaguchi N, Jeong CW, Nole-Wilson S, Krizek BA, Wagner D (2016) AINTEGUMENTA and AINTEGUMENTA-LIKE6/PLETHORA3 induce LEAFY expression in response to auxin to promote the onset of flower formation in Arabidopsis. Plant Physiol 170:283–293

    Article  CAS  PubMed  Google Scholar 

  96. Krizek BA, Blakley IC, Ho Y-Y, Freese N, Loraine AE (2020) The Arabidopsis transcription factor AINTEGUMENTA orchestrates patterning genes and auxin signaling in the establishment of floral growth and form. Plant J 103:752–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stigliani A et al (2019) Capturing auxin response factors syntax using DNA binding models. Mol Plant 12:822–832

    Article  CAS  PubMed  Google Scholar 

  98. Talbert PB, Adler HT, Parks DW, Comai L (1995) The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development 121:2723–2735

    Article  CAS  PubMed  Google Scholar 

  99. Chen Q et al (1999) The Arabidopsis FILAMENTOUS FLOWER gene is required for flower formation. Development 126:2715–2726

    Article  CAS  PubMed  Google Scholar 

  100. Sawa S et al (1999) FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev 13:1079–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001) REVOLUTA regulates meristem initiation at lateral positions. Plant J 25:223–236

    Article  CAS  PubMed  Google Scholar 

  102. Ram H et al (2020) An integrated analysis of cell-type specific gene expression reveals genes regulated by REVOLUTA and KANADI1 in the Arabidopsis shoot apical meristem. PLoS Genet 16:e1008661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Greb T et al (2003) Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev 17:1175–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hibara K et al (2006) Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell 18:2946–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Keller T, Abbott J, Moritz T, Doerner P (2006) Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development. Plant Cell 18:598–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Muller D, Schmitz G, Theres K (2006) Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell 18:586–597

    Article  PubMed  PubMed Central  Google Scholar 

  108. Chahtane H et al (2013) A variant of LEAFY reveals its capacity to stimulate meristem development by inducing RAX1. Plant J 74:678–689

    Article  CAS  PubMed  Google Scholar 

  109. Chung Y et al (2019) Auxin response factors promote organogenesis by chromatin-mediated repression of the pluripotency gene SHOOTMERISTEMLESS. Nat Commun 10:886

    Article  PubMed  PubMed Central  Google Scholar 

  110. Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617–619

    Article  CAS  PubMed  Google Scholar 

  111. Yadav RK et al (2011) WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev 25:2025–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gruel J, Deichmann J, Landrein B, Hitchcock T, Jonsson H (2018) The interaction of transcription factors controls the spatial layout of plant aerial stem cell niches. NPJ Syst Biol Appl 4:36

    Article  PubMed  PubMed Central  Google Scholar 

  113. Krizek BA et al (2016) RNA-Seq links the transcription factors AINTEGUMENTA and AINTEGUMENTA-LIKE6 to cell wall remodeling and plant defense pathways. Plant Physiol 171:2069–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yang W et al (2016) Regulation of meristem morphogenesis by cell wall synthases in Arabidopsis. Curr Biol 26:1404–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sampathkumar A et al (2019) Primary wall cellulose synthase regulates shoot apical meristem mechanics and growth. Development 146:dev179036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Traas J (2018) Organogenesis at the shoot apical meristem. Plants (Basel) 8(1):6

    Article  PubMed  Google Scholar 

  117. Sassi M et al (2014) An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis. Curr Biol 24:2335–2342

    Article  CAS  PubMed  Google Scholar 

  118. Landrein B et al (2015) Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. Elife 4:e07811

    Article  PubMed  PubMed Central  Google Scholar 

  119. Huala E, Sussex IM (1992) LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell 4:901–913

    Article  PubMed  PubMed Central  Google Scholar 

  120. Pinyopich A et al (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88

    Article  CAS  PubMed  Google Scholar 

  121. Parcy F, Nilsson O, Busch MA, Lee I, Weigel D (1998) A genetic framework for floral patterning. Nature 395:561–566

    Article  CAS  PubMed  Google Scholar 

  122. Wagner D, Sablowski RW, Meyerowitz EM (1999) Transcriptional activation of APETALA1 by LEAFY. Science 285:582–584

    Article  CAS  PubMed  Google Scholar 

  123. Pastore JJ et al (2011) LATE MERISTEM IDENTITY2 acts together with LEAFY to activate APETALA1. Development 138:3189–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yamaguchi N et al (2014) Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344:638–641

    Article  CAS  PubMed  Google Scholar 

  125. Chandler JW, Werr W (2017) DORNROSCHEN, DORNROSCHEN-LIKE, and PUCHI redundantly control floral meristem identity and organ initiation in Arabidopsis. J Exp Bot 68:3457–3472

    Article  CAS  PubMed  Google Scholar 

  126. Zhang B et al (2017) BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. Elife 6:e26759

    Article  PubMed  PubMed Central  Google Scholar 

  127. Chahtane H et al (2018) LEAFY activity is post-transcriptionally regulated by BLADE ON PETIOLE2 and CULLIN3 in Arabidopsis. New Phytol 220:579–592

    Article  CAS  PubMed  Google Scholar 

  128. Ahn JH et al (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25:605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ho WWH, Weigel D (2014) Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell 26:552–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Périlleux C, Bouché F, Randoux M, Orman-ligeza B (2019) Turning meristems into fortresses. Trends Plant Sci 24:431–442

    Article  PubMed  Google Scholar 

  131. Hanano S, Goto K (2011) Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 23:3172–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Goretti D et al (2020) TERMINAL FLOWER1 functions as a mobile transcriptional cofactor in the shoot apical meristem. Plant Physiol 182:2081–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhu Y et al (2020) TERMINAL FLOWER 1-FD complex target genes and competition with FLOWERING LOCUS T. Nat Commun 11:5118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Liu C et al (2007) Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 134:1901–1910

    Article  CAS  PubMed  Google Scholar 

  135. Parcy F, Bomblies K, Weigel D (2002) Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development 129:2519–2527

    Article  CAS  PubMed  Google Scholar 

  136. Goslin K et al (2017) Transcription factor interplay between LEAFY and APETALA1/CAULIFLOWER during floral initiation. Plant Physiol 174:1097–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Serrano-Mislata A et al (2017) Regulatory interplay between LEAFY, APETALA1/CAULIFLOWER and TERMINAL FLOWER1: new insights into an old relationship. Plant Signal Behav 12:e1370164

    Article  PubMed  PubMed Central  Google Scholar 

  138. Thomson B, Wellmer F (2019) Molecular regulation of flower development. In: Grossniklaus U (ed) Plant development and evolution, Current topics in developmental biology, vol 131. Elsevier, Amsterdam, pp 185–210

    Chapter  Google Scholar 

  139. Azpeitia E et al (2021) Cauliflower fractal forms arise from perturbations of floral gene networks. Science 373:192–197

    Article  CAS  PubMed  Google Scholar 

  140. Winter CM, Yamaguchi N, Wu M, Wagner D (2015) Transcriptional programs regulated by both LEAFY and APETALA1 at the time of flower formation. Physiol Plant 155:55–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yan W, Chen D, Kaufmann K (2016) Molecular mechanisms of floral organ specification by MADS domain proteins. Curr Opin Plant Biol 29:154–162

    Article  CAS  PubMed  Google Scholar 

  142. Moyroud E et al (2011) Prediction of regulatory interactions from genome sequences using a biophysical model for the Arabidopsis LEAFY transcription factor. Plant Cell 23:1293–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Winter CM et al (2011) LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev Cell 20:430–443

    Article  CAS  PubMed  Google Scholar 

  144. Pajoro A et al (2014) Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biol 15:R41

    Article  PubMed  PubMed Central  Google Scholar 

  145. Sayou C et al (2016) A SAM oligomerization domain shapes the genomic binding landscape of the LEAFY transcription factor. Nat Commun 7:11222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lai X, Verhage L, Hugouvieux V, Zubieta C (2018) Pioneer factors in animals and plants-colonizing chromatin for gene regulation. Molecules 23:1914

    Article  PubMed  PubMed Central  Google Scholar 

  147. Jin R et al (2021) LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate. Nat Commun 12:626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lai X et al (2021) The LEAFY floral regulator displays pioneer transcription factor properties. Mol Plant 14:829–837

    Article  CAS  PubMed  Google Scholar 

  149. Wu M-F et al (2012) SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors. Proc Natl Acad Sci U S A 109:3576–3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Smaczniak C et al (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci U S A 109:1560–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Liu C, Xi W, Shen L, Tan C, Yu H (2009) Regulation of floral patterning by flowering time genes. Dev Cell 16:711–722

    Article  CAS  PubMed  Google Scholar 

  152. Chen D, Yan W, Fu L-Y, Kaufmann K (2018) Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana. Nat Commun 9:4534

    Article  PubMed  PubMed Central  Google Scholar 

  153. Breuil-Broyer S et al (2004) High-resolution boundary analysis during Arabidopsis thaliana flower development. Plant J 38:182–192

    Article  CAS  PubMed  Google Scholar 

  154. Smith HMS, Campbell BC, Hake S (2004) Competence to respond to floral inductive signals requires the homeobox genes PENNYWISE and POUND-FOOLISH. Curr Biol 14:812–817

    Article  CAS  PubMed  Google Scholar 

  155. Ung N, Lal S, Smith HMS (2011) The role of PENNYWISE and POUND-FOOLISH in the maintenance of the shoot apical meristem in Arabidopsis. Plant Physiol 156:605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hamant O, Pautot V (2010) Plant development: a TALE story. C R Biol 333:371–381

    Article  CAS  PubMed  Google Scholar 

  157. Aida M, Tasaka M (2006) Genetic control of shoot organ boundaries. Curr Opin Plant Biol 9:72–77

    Article  CAS  PubMed  Google Scholar 

  158. Yu H, Huang T (2016) Molecular mechanisms of floral boundary formation in Arabidopsis. Int J Mol Sci 17:317

    Article  PubMed  PubMed Central  Google Scholar 

  159. Spinelli SV, Martin AP, Viola IL, Gonzalez DH, Palatnik JF (2011) A mechanistic link between STM and CUC1 during Arabidopsis development. Plant Physiol 156:1894–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Xu M et al (2010) Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24. Plant J 63:974–989

    Article  CAS  PubMed  Google Scholar 

  161. Khan M et al (2015) Repression of lateral organ boundary genes by PENNYWISE and POUND-FOOLISH is essential for meristem maintenance and flowering in Arabidopsis. Plant Physiol 169:2166–2186

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Wang Y et al (2019) Clade I TGACG-motif binding basic leucine zipper transcription factors mediate BLADE-ON-PETIOLE-dependent regulation of development. Plant Physiol 180:937–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Khan M et al (2012) Antagonistic interaction of BLADE-ON-PETIOLE1 and 2 with BREVIPEDICELLUS and PENNYWISE regulates Arabidopsis inflorescence architecture. Plant Physiol 158:946–960

    Article  CAS  PubMed  Google Scholar 

  164. Khan M, Tabb P, Hepworth SR (2012) BLADE-ON-PETIOLE1 and 2 regulate Arabidopsis inflorescence architecture in conjunction with homeobox genes KNAT6 and ATH1. Plant Signal Behav 7:788–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhao Y et al (2004) HANABA TARANU is a GATA transcription factor that regulates shoot apical meristem and flower development in Arabidopsis. Plant Cell 16:2586–2600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ding L et al (2015) HANABA TARANU (HAN) bridges meristem and organ primordia boundaries through PINHEAD, JAGGED, BLADE-ON-PETIOLE2 and CYTOKININ OXIDASE 3 during flower development in Arabidopsis. PLoS Genet 11:e1005479

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ji L et al (2011) ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet 7:e1001358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jasinski S et al (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565

    Article  CAS  PubMed  Google Scholar 

  169. Cucinotta M et al (2018) CUP-SHAPED COTYLEDON1 (CUC1) and CUC2 regulate cytokinin homeostasis to determine ovule number in Arabidopsis. J Exp Bot 69:5169–5176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  CAS  PubMed  Google Scholar 

  171. Lohmann JU et al (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:793–803

    Article  CAS  PubMed  Google Scholar 

  172. Rieu P et al (2022) The F-box cofactor UFO redirects the LEAFY floral regulator to novel cis-elements. bioRxiv. https://doi.org/10.1101/20220614495942

  173. Theissen G, Melzer R, Rumpler F (2016) MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143:3259–3271

    Article  CAS  PubMed  Google Scholar 

  174. Puranik S et al (2014) Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis. Plant Cell 26:3603–3615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hugouvieux V, Zubieta C (2018) MADS transcription factors cooperate: complexities of complex formation. J Exp Bot 69:1821–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hugouvieux V et al (2018) Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis. Nucleic Acids Res 46:4966–4977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lai X et al (2020) Genome-wide binding of SEPALLATA3 and AGAMOUS complexes determined by sequential DNA-affinity purification sequencing. Nucleic Acids Res 48:9637–9648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lai X et al (2021) The intervening domain is required for DNA-binding and functional identity of plant MADS transcription factors. Nat Commun 12:4760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Prunet N, Jack TP (2014) Flower development in Arabidopsis: there is more to it than learning your ABCs. Methods Mol Biol 1110:3–33

    Article  PubMed  Google Scholar 

  180. Kramer EM (2019) Plus ca change, plus c’est la meme chose: the developmental evolution of flowers. Curr Top Dev Biol 131:211–238

    Article  PubMed  Google Scholar 

  181. Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Irish VF, Sussex IM (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2:741–753

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Morel P et al (2017) Divergence of the floral A-function between an asterid and a rosid species. Plant Cell 29:1605–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Monniaux M, Vandenbussche M (2018) How to evolve a perianth: a review of cadastral mechanisms for perianth identity. Front Plant Sci 9:1573

    Article  PubMed  PubMed Central  Google Scholar 

  185. Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940

    Article  CAS  PubMed  Google Scholar 

  186. Conner J, Liu Z (2000) LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development. Proc Natl Acad Sci U S A 97:12902–12907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Franks RG, Wang C, Levin JZ, Liu Z (2002) SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG. Development 129:253–263

    Article  CAS  PubMed  Google Scholar 

  188. Sridhar VV, Surendrarao A, Liu Z (2006) APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development 133:3159–3166

    Article  CAS  PubMed  Google Scholar 

  189. Bao X, Franks RG, Levin JZ, Liu Z (2004) Repression of AGAMOUS by BELLRINGER in floral and inflorescence meristems. Plant Cell 16:1478–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Krogan NT, Hogan K, Long JA (2012) APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19. Development 139:4180–4190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  192. Wollmann H, Mica E, Todesco M, Long JA, Weigel D (2010) On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development 137:3633–3642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Roeder AHK, Cunha A, Ohno CK, Meyerowitz EM (2012) Cell cycle regulates cell type in the Arabidopsis sepal. Development 139:4416–4427

    Article  CAS  PubMed  Google Scholar 

  194. Robinson DO et al (2018) Ploidy and size at multiple scales in the Arabidopsis sepal. Plant Cell 30:2308–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Hervieux N et al (2016) A mechanical feedback restricts sepal growth and shape in Arabidopsis. Curr Biol 26:1019–1028

    Article  CAS  Google Scholar 

  196. Kaufmann K et al (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7:e1000090

    Article  PubMed  PubMed Central  Google Scholar 

  197. Yant L et al (2010) Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 22:2156–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    Article  CAS  PubMed  Google Scholar 

  199. Wuest SE et al (2012) Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc Natl Acad Sci U S A 109:13452–13457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bowman JL, Smyth DR (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126:2387–2396

    Article  CAS  PubMed  Google Scholar 

  201. Sauret-Gueto S, Schiessl K, Bangham A, Sablowski R, Coen E (2013) JAGGED controls Arabidopsis petal growth and shape by interacting with a divergent polarity field. PLoS Biol 11:e1001550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Schiessl K, Muiño JM, Sablowski R (2014) Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors. Proc Natl Acad Sci U S A 111:2830–2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. OMaoileidigh DS et al (2013) Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS. Plant Cell 25:2482–2503

    Article  CAS  PubMed  Google Scholar 

  204. Norberg M, Holmlund M, Nilsson O (2005) The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development 132:2203–2213

    Article  CAS  PubMed  Google Scholar 

  205. Nag A, King S, Jack T (2009) miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci U S A 106:22534–22539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Huang T, Irish VF (2015) Temporal control of plant organ growth by TCP transcription factors. Curr Biol 25:1765–1770

    Article  CAS  PubMed  Google Scholar 

  207. Ito T et al (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430:356–360

    Article  CAS  PubMed  Google Scholar 

  208. Wei B et al (2015) The molecular mechanism of sporocyteless/nozzle in controlling Arabidopsis ovule development. Cell Res 25:121–134

    Article  CAS  PubMed  Google Scholar 

  209. Li X, Lian H, Zhao Q, He Y (2019) microRNA166 monitors SPOROCYTELESS/NOZZLE (SPL/NZZ) for building of the anther internal boundary. Plant Physiol 181:208–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhao F et al (2017) Phosphorylation of SPOROCYTELESS/NOZZLE by the MPK3/6 kinase is required for anther development. Plant Physiol 173:2265–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Liu X et al (2009) The SPOROCYTELESS/NOZZLE gene is involved in controlling stamen identity in Arabidopsis. Plant Physiol 151:1401–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kram BW, Carter CJ (2009) Arabidopsis thaliana as a model for functional nectary analysis. Sex Plant Reprod 22:235–246

    Article  PubMed  Google Scholar 

  213. Alvarez-Buylla ER et al (2010) Flower development. Arabidopsis Book 8:e0127

    Article  PubMed  PubMed Central  Google Scholar 

  214. Lee J-Y et al (2005) Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development 132:5021–5032

    Article  CAS  PubMed  Google Scholar 

  215. Baum SF, Eshed Y, Bowman JL (2001) The Arabidopsis nectary is an ABC-independent floral structure. Development 128:4657–4667

    Article  CAS  PubMed  Google Scholar 

  216. Morel P et al (2018) The floral C-lineage genes trigger nectary development in petunia and Arabidopsis. Plant Cell 30:2020–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Yanofsky MF et al (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39

    Article  CAS  PubMed  Google Scholar 

  218. O’Maoileidigh DS, Stewart D, Zheng B, Coupland G, Wellmer F (2018) Floral homeotic proteins modulate the genetic program for leaf development to suppress trichome formation in flowers. Development 145:dev157784

    Article  PubMed  Google Scholar 

  219. Favaro R et al (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Rodriguez-Cazorla E et al (2015) K-homology nuclear ribonucleoproteins regulate floral organ identity and determinacy in arabidopsis. PLoS Genet 11:e1004983

    Article  PubMed  PubMed Central  Google Scholar 

  221. Rodriguez-Cazorla E et al (2018) Ovule identity mediated by pre-mRNA processing in Arabidopsis. PLoS Genet 14:e1007182

    Article  PubMed  PubMed Central  Google Scholar 

  222. Goncalves B et al (2015) A conserved role for CUP-SHAPED COTYLEDON genes during ovule development. Plant J 83:732–742

    Article  CAS  PubMed  Google Scholar 

  223. Muiño JM, Smaczniak C, Angenent GC, Kaufmann K, van Dijk ADJ (2014) Structural determinants of DNA recognition by plant MADS-domain transcription factors. Nucleic Acids Res 42:2138–2146

    Article  PubMed  Google Scholar 

  224. Smaczniak C, Muiño JM, Chen D, Angenent GC, Kaufmann K (2017) Differences in DNA binding specificity of floral homeotic protein complexes predict organ-specific target genes. Plant Cell 29:1822–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Kappel S, Melzer R, Rumpler F, Gafert C, Theissen G (2018) The floral homeotic protein SEPALLATA3 recognizes target DNA sequences by shape readout involving a conserved arginine residue in the MADS-domain. Plant J 95:341–357

    Article  PubMed  Google Scholar 

  226. Melzer R, Theissen G (2009) Reconstitution of “floral quartets” in vitro involving class B and class E floral homeotic proteins. Nucleic Acids Res 37:2723–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Melzer R, Verelst W, Theissen G (2009) The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro. Nucleic Acids Res 37:144–157

    Article  CAS  PubMed  Google Scholar 

  228. Jetha K, Theissen G, Melzer R (2014) Arabidopsis SEPALLATA proteins differ in cooperative DNA-binding during the formation of floral quartet-like complexes. Nucleic Acids Res 42:10927–10942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Takeda S et al (2011) CUP-SHAPED COTYLEDON1 transcription factor activates the expression of LSH4 and LSH3, two members of the ALOG gene family, in shoot organ boundary cells. Plant J 66:1066–1077

    Article  CAS  PubMed  Google Scholar 

  230. Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322

    Article  CAS  PubMed  Google Scholar 

  231. Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046

    Article  CAS  PubMed  Google Scholar 

  232. Yamaguchi N, Wu M-F, Winter CM, Wagner D (2014) LEAFY and polar auxin transport coordinately regulate Arabidopsis flower development. Plants (Basel) 3:251–265

    Article  PubMed  Google Scholar 

  233. Griffith ME, da Silva Conceicao A, Smyth DR (1999) PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower. Development 126:5635–5644

    Article  CAS  PubMed  Google Scholar 

  234. Brewer PB et al (2004) PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development 131:4035–4045

    Article  CAS  PubMed  Google Scholar 

  235. Lampugnani ER, Kilinc A, Smyth DR (2013) Auxin controls petal initiation in Arabidopsis. Development 140:185–194

    Article  CAS  PubMed  Google Scholar 

  236. Takeda S, Matsumoto N, Okada K (2004) RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana. Development 131:425–434

    Article  CAS  PubMed  Google Scholar 

  237. Krizek BA, Lewis MW, Fletcher JC (2006) RABBIT EARS is a second-whorl repressor of AGAMOUS that maintains spatial boundaries in Arabidopsis flowers. Plant J 45:369–383

    Article  CAS  PubMed  Google Scholar 

  238. Huang T, Lopez-Giraldez F, Townsend JP, Irish VF (2012) RBE controls microRNA164 expression to effect floral organogenesis. Development 139:2161–2169

    Article  CAS  PubMed  Google Scholar 

  239. Levin JZ, Meyerowitz EM (1995) UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 7:529–548

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Levin JZ, Fletcher JC, Chen X, Meyerowitz EM (1998) A genetic screen for modifiers of UFO meristem activity identifies three novel FUSED FLORAL ORGANS genes required for early flower development in Arabidopsis. Genetics 149:579–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Gonzalez-Carranza ZH et al (2007) Hawaiian skirt: an F-box gene that regulates organ fusion and growth in Arabidopsis. Plant Physiol 144:1370–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Gonzalez-Carranza ZH et al (2017) HAWAIIAN SKIRT controls size and floral organ number by modulating CUC1 and CUC2 expression. PLoS One 12:e0185106

    Article  PubMed  PubMed Central  Google Scholar 

  243. Zhang X et al (2017) The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT is a new player in the microRNA pathway. PLoS One 12:e0189788

    Article  PubMed  PubMed Central  Google Scholar 

  244. Sakai H, Medrano LJ, Meyerowitz EM (1995) Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378:199–203

    Article  CAS  PubMed  Google Scholar 

  245. Bowman JL et al (1992) SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development 114:599–615

    Article  CAS  PubMed  Google Scholar 

  246. Prunet N, Yang W, Das P, Meyerowitz EM, Jack TP (2017) SUPERMAN prevents class B gene expression and promotes stem cell termination in the fourth whorl of Arabidopsis thaliana flowers. Proc Natl Acad Sci U S A 114:7166–7171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Xu Y et al (2018) SUPERMAN regulates floral whorl boundaries through control of auxin biosynthesis. EMBO J 37:e97499

    Article  PubMed  PubMed Central  Google Scholar 

  248. Sun B, Ito T (2015) Regulation of floral stem cell termination in Arabidopsis. Front Plant Sci 6:17

    Article  PubMed  PubMed Central  Google Scholar 

  249. Liu X et al (2011) AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins. Plant Cell 23:3654–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Sun B, Xu Y, Ng K-H, Ito T (2009) A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev 23:1791–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Sun B et al (2019) Integration of transcriptional repression and Polycomb-mediated silencing of WUSCHEL in floral meristems. Plant Cell 31:1488–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Bollier N et al (2018) At-MINI ZINC FINGER2 and Sl-INHIBITOR OF MERISTEM ACTIVITY, a conserved missing link in the regulation of floral meristem termination in Arabidopsis and tomato. Plant Cell 30:83–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Yamaguchi N, Huang J, Xu Y, Tanoi K, Ito T (2017) Fine-tuning of auxin homeostasis governs the transition from floral stem cell maintenance to gynoecium formation. Nat Commun 8:1125

    Article  PubMed  PubMed Central  Google Scholar 

  254. Huang Z et al (2017) APETALA2 antagonizes the transcriptional activity of AGAMOUS in regulating floral stem cells in Arabidopsis thaliana. New Phytol 215:1197–1209

    Article  CAS  PubMed  Google Scholar 

  255. O’Malley RC et al (2016) Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 166:1598

    Article  PubMed  Google Scholar 

  256. Bartlett A et al (2017) Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat Protoc 12:1659–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Neumann M et al (2022) A 3D gene expression atlas of the floral meristem based on spatial reconstruction of single nucleus RNA sequencing data. Nat Commun 13:2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Xu X, Smaczniak C, Muiño JC, Kaufmann K (2021) Cell identity specification in plants: lessons from flower development. J Exp Bot 72:4202–4217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Parcy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chahtane, H. et al. (2023). Flower Development in Arabidopsis. In: Riechmann, J.L., Ferrándiz, C. (eds) Flower Development . Methods in Molecular Biology, vol 2686. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3299-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3299-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3298-7

  • Online ISBN: 978-1-0716-3299-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics