Skip to main content

Bulk Reformatting of Antibody Fragments Displayed on the Surface of Yeast Cells to Final IgG Format for Mammalian Production

  • Protocol
  • First Online:
Genotype Phenotype Coupling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2681))

  • 686 Accesses

Abstract

While yeast surface display (YSD) has gained traction for antibody hit discovery efforts with the first therapeutic YSD-isolated antibody sintilimab approved in 2018, a major drawback that remains is the time-consuming reformatting of monoclonal antibody (mAb) candidates. By using a Golden Gate cloning (GGC)-dependent workflow, the bulk transfer of genetic information can be performed from antibody fragments displayed on yeast cells to a bidirectional mammalian expression vector. Herein, we describe in-depth protocols for the reformatting of mAbs, starting from the generation of Fab fragment libraries in YSD vectors and ending up with IgG molecules in bidirectional mammalian vectors in a consolidated two-pot, two-step procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaplon H, Chenoweth A, Crescioli S, Reichert JM (2022) Antibodies to watch in 2022. MAbs 14. https://doi.org/10.1080/19420862.2021.2014296

  2. Mullard A (2021) FDA approves 100th monoclonal antibody product. Nat Rev Drug Discov 20:491–495. https://doi.org/10.1038/d41573-021-00079-7

    Article  CAS  PubMed  Google Scholar 

  3. Schaffitzel C, Hanes J, Jermutus L, Plückthun A (1999) Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. J Immunol Methods 231:119–135. https://doi.org/10.1016/S0022-1759(99)00149-0

    Article  CAS  PubMed  Google Scholar 

  4. McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554. https://doi.org/10.1038/348552a0

    Article  CAS  PubMed  Google Scholar 

  5. Josephson K, Ricardo A, Szostak JW (2014) mRNA display: from basic principles to macrocycle drug discovery. Drug Discov Today 19:388–399. https://doi.org/10.1016/j.drudis.2013.10.011

    Article  CAS  PubMed  Google Scholar 

  6. Parthiban K, Perera RL, Sattar M et al (2019) A comprehensive search of functional sequence space using large mammalian display libraries created by gene editing. MAbs 11:884–898. https://doi.org/10.1080/19420862.2019.1618673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boder ET, Wittrup KD (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–557. https://doi.org/10.1038/nbt0697-553

    Article  CAS  PubMed  Google Scholar 

  8. Wittrup DK, Kieke MC, Kranz DM et al (1999) Yeast cell surface display of proteins and uses thereof. pp 1–74. US6699658B1; https://patents.google.com/patent/US6699658B1/en

  9. McMahon C, Baier AS, Pascolutti R et al (2018) Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat Struct Mol Biol 25:289–296. https://doi.org/10.1038/s41594-018-0028-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosowski S, Becker S, Toleikis L et al (2018) A novel one-step approach for the construction of yeast surface display Fab antibody libraries. Microb Cell Factories 17:3. https://doi.org/10.1186/s12934-017-0853-z

    Article  CAS  Google Scholar 

  11. Sivelle C, Sierocki R, Ferreira-Pinto K et al (2018) Fab is the most efficient format to express functional antibodies by yeast surface display. MAbs 10:720–729. https://doi.org/10.1080/19420862.2018.1468952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Uchański T, Zögg T, Yin J et al (2019) An improved yeast surface display platform for the screening of nanobody immune libraries. Sci Rep 9:382. https://doi.org/10.1038/s41598-018-37212-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Osborn MJ, Ma B, Avis S et al (2013) High-affinity IgG antibodies develop naturally in Ig-knockout rats carrying germline human IgH / Ig κ / Ig λ loci bearing the rat C H region. J Immunol:1481–1490. https://doi.org/10.4049/jimmunol.1203041

  14. Fiebig D, Bogen JP, Carrara SC et al (2022) Streamlining the transition from yeast surface display of antibody fragment immune libraries to the production as IgG format in mammalian cells. Front Bioeng Biotechnol 10. https://doi.org/10.3389/fbioe.2022.794389

  15. Carrara SC, Fiebig D, Bogen JP et al (2021) Recombinant antibody production using a dual-promoter single plasmid system. Antibodies 10:18. https://doi.org/10.3390/antib10020018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Benatuil L, Perez JM, Belk J, Hsieh C-M (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23:155–159. https://doi.org/10.1093/protein/gzq002

    Article  CAS  PubMed  Google Scholar 

  17. Bogen JP, Carrara SC, Fiebig D et al (2020) Expeditious generation of biparatopic common light chain antibodies via chicken immunization and yeast display screening. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.606878

  18. Bogen JP, Carrara SC, Fiebig D et al (2021) Design of a trispecific checkpoint inhibitor and natural killer cell engager based on a 2 + 1 common light chain antibody architecture. Front Immunol 12. https://doi.org/10.3389/fimmu.2021.669496

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Kolmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Carrara, S.C., Bogen, J.P., Fiebig, D., Grzeschik, J., Hock, B., Kolmar, H. (2023). Bulk Reformatting of Antibody Fragments Displayed on the Surface of Yeast Cells to Final IgG Format for Mammalian Production. In: Zielonka, S., Krah, S. (eds) Genotype Phenotype Coupling. Methods in Molecular Biology, vol 2681. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3279-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3279-6_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3278-9

  • Online ISBN: 978-1-0716-3279-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics