Skip to main content

Capture and Release of Cancer Cells Through Smart Bioelectronics

  • Protocol
  • First Online:
Microfluidic Systems for Cancer Diagnosis

Abstract

Noninvasive collection of target cells such as circulating tumor cells (CTCs) is crucial for biology and medicine research. Conventional methods of cell collection are often complex, requiring either size-dependent sorting or invasive enzymatic reactions. Here, we show the development of a functional polymer film, which combines the thermoresponsive poly(N-isopropylacrylamide) and the conducting poly(3,4-ethylenedioxythiopene)/poly(styrene sulfonate), and its use for the capture and release of CTCs. When coated onto microfabricated gold electrodes, the proposed polymer films are capable of noninvasively capturing and controllably releasing cells while, at the same time, monitoring these processes with conventional electrical measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guan X (2015) Cancer metastases: challenges and opportunities. Acta Pharm Sin B 5:402–418

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hao Y, Liu H, Li G et al (2018) Photo and Thermo dual-responsive copolymer surfaces for efficient cell capture and release. ChemPhysChem 19:2107–2112. https://doi.org/10.1002/cphc.201701145

    Article  CAS  PubMed  Google Scholar 

  3. Qian W, Zhang Y, Chen W (2015) Capturing cancer: emerging microfluidic Technologies for the Capture and Characterization of circulating tumor cells. Small 11:3850–3872. https://doi.org/10.1002/smll.201403658

    Article  CAS  PubMed  Google Scholar 

  4. Gurkan UA, Anand T, Tas H et al (2011) Controlled viable release of selectively captured label-free cells in microchannels. Lab Chip 11:3979–3989. https://doi.org/10.1039/c1lc20487d

    Article  CAS  PubMed  Google Scholar 

  5. Johnson SP, Catania JM, Harman RJ, Jensen ED (2012) Adipose-derived stem cell collection and characterization in bottlenose dolphins (tursiops truncatus). Stem Cells Dev 21:2949–2957. https://doi.org/10.1089/scd.2012.0039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhagwat N, Dulmage K, Pletcher CH et al (2018) An integrated flow cytometry-based platform for isolation and molecular characterization of circulating tumor single cells and clusters. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-23217-5

    Article  CAS  Google Scholar 

  7. Gaysinskaya V, Soh IY, van der Heijden GW, Bortvin A (2014) Optimized flow cytometry isolation of murine spermatocytes. Cytom Part A 85:556–565. https://doi.org/10.1002/cyto.a.22463

    Article  CAS  Google Scholar 

  8. Legut M, Sanjana NE (2019) Immunomagnetic cell sorting. Nat. Biomed Eng 3:759–760

    Google Scholar 

  9. Henry E, Holm SH, Zhang Z et al (2016) Sorting cells by their dynamical properties. Sci Rep 6:1–11. https://doi.org/10.1038/srep34375

    Article  CAS  Google Scholar 

  10. Yamada M, Seko W, Yanai T et al (2017) Slanted, asymmetric microfluidic lattices as size-selective sieves for continuous particle/cell sorting. Lab Chip 17:304–314. https://doi.org/10.1039/c6lc01237j

    Article  CAS  PubMed  Google Scholar 

  11. Cao J, Zhao XP, Younis MR et al (2017) Ultrasensitive capture, detection, and release of circulating tumor cells using a Nanochannel-Ion Channel hybrid coupled with electrochemical detection technique. Anal Chem 89:10957–10964. https://doi.org/10.1021/acs.analchem.7b02765

    Article  CAS  PubMed  Google Scholar 

  12. Shen Q, Xu L, Zhao L et al (2013) Specific capture and release of circulating tumor cells using aptamer-modified nanosubstrates. Adv Mater 25:2368–2373. https://doi.org/10.1002/adma.201300082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bombera R, Leroy L, Livache T, Roupioz Y (2012) DNA-directed capture of primary cells from a complex mixture and controlled orthogonal release monitored by SPR imaging. Biosens Bioelectron 33:10–16. https://doi.org/10.1016/j.bios.2011.11.034

    Article  CAS  PubMed  Google Scholar 

  14. Zhao W, Cui CH, Bose S et al (2012) Bioinspired multivalent DNA network for capture and release of cells. Proc Natl Acad Sci U S A 109:19626–19631. https://doi.org/10.1073/pnas.1211234109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fathi F, Rahbarghazi R, Rashidi MR (2018) Label-free biosensors in the field of stem cell biology. Biosens Bioelectron 101:188–198

    Article  CAS  PubMed  Google Scholar 

  16. Rabie H, Zhang Y, Pasquale N et al (2019) NIR Biosensing of Neurotransmitters in Stem Cell-Derived Neural Interface Using Advanced Core–Shell Upconversion Nanoparticles. Adv Mater 31:1806991. https://doi.org/10.1002/adma.201806991

    Article  CAS  Google Scholar 

  17. Cavassin P, Pappa A-M, Pitsalidis C et al (2020) Organic transistors incorporating lipid monolayers for drug interaction studies. Adv Mater Technol 5. https://doi.org/10.1002/admt.201900680

  18. Curto VF, Ferro MP, Mariani F et al (2018) A planar impedance sensor for 3D spheroids. Lab Chip 18:933–943. https://doi.org/10.1039/c8lc00067k

    Article  CAS  PubMed  Google Scholar 

  19. Pitsalidis C, Pappa A-M, Boys AJ et al (2021) Organic bioelectronics for in vitro systems. Chem Rev acschemrev1c00539. https://doi.org/10.1021/acs.chemrev.1c00539

  20. Saez J, Dominguez-Alfaro A, Barberio C et al (2022) A 3D bioelectrical interface to assess colorectal cancer progression in vitro. Mater Today Chem 24:100990. https://doi.org/10.1016/j.mtchem.2022.100990

    Article  CAS  Google Scholar 

  21. Barberio C, Saez J, Withers A et al (2022) Conducting polymer-ECM scaffolds for human neuronal cell differentiation. Adv Healthc Mater. https://doi.org/10.1002/adhm.202200941

  22. Gao T, Li L, Wang B et al (2016) Dynamic electrochemical control of cell capture-and-release based on redox-controlled host-guest interactions. Anal Chem 88:9996–10001. https://doi.org/10.1021/acs.analchem.6b02156

    Article  CAS  PubMed  Google Scholar 

  23. Garcia-Hernando M, Saez J, Savva A et al (2021) An electroactive and thermo-responsive material for the capture and release of cells. Biosens Bioelectron 191:113405. https://doi.org/10.1016/j.bios.2021.113405

    Article  CAS  PubMed  Google Scholar 

  24. Gallagher S, Kavanagh A, Zíołkowski B et al (2014) Ionic liquid modulation of swelling and LCST behavior of N-isopropylacrylamide polymer gels. Phys Chem Chem Phys 16:3610–3616. https://doi.org/10.1039/c3cp53397b

    Article  CAS  PubMed  Google Scholar 

  25. Choi A, Seo KD, Yoon H et al (2019) Bulk poly(: N -isopropylacrylamide) (PNIPAAm) thermoresponsive cell culture platform: toward a new horizon in cell sheet engineering. Biomater Sci 7:2277–2287. https://doi.org/10.1039/c8bm01664j

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janire Saez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saez, J., Garcia-Hernando, M., Savva, A., Owens, R.M., Benito-Lopez, F., Basabe-Desmonts, L. (2023). Capture and Release of Cancer Cells Through Smart Bioelectronics. In: Garcia-Cordero, J.L., Revzin, A. (eds) Microfluidic Systems for Cancer Diagnosis . Methods in Molecular Biology, vol 2679. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3271-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3271-0_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3270-3

  • Online ISBN: 978-1-0716-3271-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics