Skip to main content

From Neurons to Language and Speech: An Overview

  • Protocol
  • First Online:
Language Electrified

Part of the book series: Neuromethods ((NM,volume 202))

  • 602 Accesses

Abstract

In this chapter, we describe some of the basic principles of the human brain functionality, focusing on language and speech processes. After discussing the structure of neurons and their communication system, we delineate the functional anatomical organization of the brain. We can think of this organ as a building with multiple floors, built at different times, where the whole architecture makes sense because of the interconnections of the different floors. The lower parts of the building represent the older structures (the cerebellum, the thalamus, the limbic system, and the basal ganglia), while the upper parts are more recent (the cerebral cortex): it contains more neurons than any other cerebral structure and performs exceptional cognitive functions thanks to continuous bottom-up and top-down neural connections. In this way, the frontal, temporal, and parietal cortices were synchronized with each other—through groups (bundles) of neurons devoted to this task—and all together were synchronized with the thalamus, the limbic system, the basal ganglia, and the cerebellum. Thereby, symbolic thought, higher consciousness and language emerged. From this perspective, we discuss also how archaic structures of the brain (as the basal ganglia and cerebellum) were re-functionalized in order to mediate language processing as a result of complex synchronized ascending/descending pathways. Finally, some theoretical models that try to capture the linguistic neural organization are briefly outlined, and future perspectives of investigation and challenges are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With the term “ventral,” we refer to areas or structures located toward the bottom of the brain.

  2. 2.

    With the term “dorsal,” we refer to areas or structures located toward the top of the brain.

References

  1. Krol LR. https://commons.wikimedia.org/wiki/File:Action_potential_schematic.svg. Accessed 19 Dec 2022

  2. Kandel ER, Koester JD, Mack SH et al (eds) (2021) Principle of neuroscience, 6th edn. McGraw Hill, New York

    Google Scholar 

  3. https://pixabay.com/it/illustrations/disegno-cellula-nervosa-neuroni-730778/. Accessed 19 Dec 2022

  4. Ackermann H, Brendel B (2016) Cerebellar contributions to speech and language. In: Hickok G, Small SL (eds) Neurobiology of language. Academic Press, Cambridge, pp 73–84

    Chapter  Google Scholar 

  5. Luo L (2016) Principles of neurobiology. Garland Science, New York

    Google Scholar 

  6. https://commons.wikimedia.org/wiki/File:Brain_headBorder.jpg. Accessed 19 Dec 2022

  7. Biaigo I. https://commons.wikimedia.org/wiki/File:Brain_latino.jpg. Accessed 19 Dec 2022

  8. Lieberman P (2009) Human language and our reptilian brain: the subcortical bases of speech, syntax, and thought. Harvard University Press, Harvard

    Google Scholar 

  9. Crosson B, McGregor K, Gopinath KS et al (2007) Functional MRI of language in aphasia: a review of the literature and the methodological challenges. Neuropsychol Rev 17:157–177. https://doi.org/10.1007/s11065-007-9024-z

    Article  PubMed Central  PubMed  Google Scholar 

  10. Abutalebi J, Della Rosa PA, Gonzaga AKC et al (2013) The role of the left putamen in multilingual language production. Brain Lang 125(3):307–315

    Article  PubMed  Google Scholar 

  11. Fisher SE (2016) A molecular genetic perspective on speech and language. In: Hickok G, Small SL (eds) Neurobiology of language. Academic Press, Cambridge, pp 13–24

    Chapter  Google Scholar 

  12. https://basicmedicalkey.com/higher-functions-of-the-nervous-system/. Accessed 19 Dec 2022

  13. Brodmann K (1909) Vergleichende Lokalisation lehre der Grosshirnrinde in ihren prinzipien Dargestellt auf Grund des Zellenbaues. Barth, Leipzig

    Google Scholar 

  14. Bruner E (2022) A network approach to the topological organization of the Brodmann map. Anat Rec 305(12):3504–3515. https://doi.org/10.1002/ar.24941

    Article  Google Scholar 

  15. https://commons.wikimedia.org/wiki/File:Brodmann_areas.jpg. Accessed 19 Dec 2022

  16. Simonyan K, Ackermann H, Chang EF et al (2016) New developments in understanding the complexity of human speech production. J Neurosci 36(45):11440–11448. https://doi.org/10.1523/JNEUROSCI.2424-16.2016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Simonyan K (2014) The laryngeal motor cortex: its organization and connectivity. Curr Opin Neurobiol 28:15–21. https://doi.org/10.1016/j.conb.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  18. Skipper JI, Devlin JT, Lametti DR (2017) The hearing ear is always found close to the speaking tongue: review of the role of the motor system in speech perception. Brain Lang 164:77–105. https://doi.org/10.1016/j.bandl.2016.10.004

    Article  PubMed  Google Scholar 

  19. Grimaldi M (2012) Toward a neural theory of language: old issues and news perspectives. J Neurolinguistics 24(5):304–327

    Article  Google Scholar 

  20. Hagoort P (2016) MUC (Memory, Unification, Control) a model on the neurobiology of language beyond single word processing. In: Hickok G, Small SL (eds) Neurobiology of language. Academic Press, Cambridge, pp 339–347

    Chapter  Google Scholar 

  21. https://www.pinterest.it/pin/268667933996501566/. Accessed 27 Dec 2022

  22. Penfield W, Rasmussen T (1950) The cerebral cortex of man: a clinical study of localization of function. Macmillan, Oxford

    Google Scholar 

  23. Crepaldi D, Berlingeri M, Paulesu E et al (2011) A place for nouns and a place for verbs? A critical review of neurocognitive data on grammatical-class effects. Brain Lang 116(1):33–49

    Article  PubMed  Google Scholar 

  24. Vigliocco G, Vinson DP, Druks J et al (2011) Nouns and verbs in the brain: a review of behavioural, electrophysiological, neuropsychological and imaging studies. Neurosci Biobehav Rev 35(3):407–426

    Article  PubMed  Google Scholar 

  25. Lukic S, Borghesani V, Weis E et al (2021) Dissociating nouns and verbs in temporal and perisylvian networks: evidence from neurodegenerative diseases. Cortex 142:47–61

    Article  PubMed Central  PubMed  Google Scholar 

  26. Pa J, Hickok G (2008) A parietal–temporal sensory–motor integration area for the human vocal tract: evidence from an fMRI study of skilled musicians. Neuropsychologia 46(1):362–368

    Article  PubMed  Google Scholar 

  27. Hickok G, Okada K, Serences JT (2009) Area Spt in the human planum temporale supports sensory-motor integration for speech processing. J Neurophysiol 101:2725–2732

    Article  PubMed  Google Scholar 

  28. Hickok G (2017) A cortical circuit for voluntary laryngeal control: implications for the evolution language. Psychon Bull Rev 24:56–63

    Article  PubMed Central  PubMed  Google Scholar 

  29. Edelman GM, Tononi G (2000) A Universe of Consciousness. How Matter Becomes Imagination, New York: Basic Books.

    Google Scholar 

  30. Davis PJ, Zhang SP, Winkworth A et al (1996) Neural control of respiration: respiratory and emotional influences. J Voice 10:23–38

    Article  CAS  PubMed  Google Scholar 

  31. Kreiman J, Sidtis D (2011) Foundations of voice studies: an interdisciplinary approach to voice production and perception. Wiley-Blackwell, New York/London. https://doi.org/10.1002/9781444395068

    Book  Google Scholar 

  32. Grimaldi M (2019) Il cervello fonologico. Carocci, Roma

    Google Scholar 

  33. Friederici AD (2016) The neuroanatomical pathway model of language: syntactic and semantic networks. In: Hickok G, Small S (eds) Neurobiology of language. Academic Press, Cambridge, pp 349–356

    Chapter  Google Scholar 

  34. Hagoort P (2013) MUC (Memory, Unification, Control) and beyond. Front Psychol 4. https://doi.org/10.3389/fpsyg.2013.00416

  35. Broca P (1861) Remarques sur le siège de la faculté du langage articulé, suivies d’une observation d’aphémie (parte de la parole). Bulletins de la Société Anatomique de Paris 6:330–357

    Google Scholar 

  36. Wernicke C (1874) Der aphasische Symptomencomplex. Springer-Verlag, Berlin

    Google Scholar 

  37. Kopell NJ, Gritton HJ, Whittington MA et al (2014) Beyond the connectome: the dynome. Neuron 83:1319–1328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Murphy E (2015) The brain dynamics of linguistic computation. Front Psychol 6. https://doi.org/10.3389/fpsyg.2015.01515

  39. Hickok G, Poeppel D (2004) Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92:67–99

    Article  PubMed  Google Scholar 

  40. Hickok G, Poeppel D (2007) The cortical organization of speech perception. Nat Rev Neurosci 8:393–402

    Article  CAS  PubMed  Google Scholar 

  41. Hickok G, Poeppel D (2016) Neural basis of speech perception. In: Hickok G, Small SL (eds) Neurobiology of language. Academic Press, Cambridge, pp 299–310

    Chapter  Google Scholar 

  42. Zatorre RJ, Belin P, Penhune VB (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6:37–46

    Article  PubMed  Google Scholar 

  43. Obleser J, Eisner F, Kotz SA (2008) Bilateral speech comprehension reflects differential sensitivity to spectral and temporal features. J Neurosci 28(32):8116–8123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Albouy P, Benjamin L, Morillon B, Zatorre RJ (2020) Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science 367:1043–1047

    Google Scholar 

  45. Poeppel D (2003) The analysis of speech in different temporal integration windows: cerebral lateralization as “asymmetric sampling in time”. Speech Commun 41:245–255

    Article  Google Scholar 

  46. Flinker A, Doyle WK, Mehta AD et al (2019) Spectrotemporal modulation provides a unifying framework for auditory cortical asymmetries. Nat Hum Behav 3(4):393–405

    Article  PubMed Central  PubMed  Google Scholar 

  47. Giroud J, Trébuchon A, Schön D et al (2020) Asymmetric sampling in human auditory cortex reveals spectral processing hierarchy. PLoS Biol 18(3):e3000207

    Article  PubMed Central  PubMed  Google Scholar 

  48. Norman-Haignere SV, Long LK, Devinsky O et al (2022) Multiscale temporal integration organizes hierarchical computation in human auditory cortex. Nat Hum Behav 6(3):455–469

    Article  PubMed Central  PubMed  Google Scholar 

  49. Friederici AD (2009) Pathways to language: fiber tracts in the human brain. Trends Cogn Sci 13:175–181

    Article  PubMed  Google Scholar 

  50. Friederici AD (2009) Allocating function to fiber tracts: facing its indirectness. Trends Cogn Sci 9:370–371

    Article  Google Scholar 

  51. Saur D, Kreher BW, Schnell S et al (2008) Ventral and dorsal pathways for language. PNAS 105:18035–18040. https://doi.org/10.1073/pnas.0805234105

    Article  PubMed Central  PubMed  Google Scholar 

  52. Friederici AD (2017) Language in our brain: the origins of a uniquely human capacity. MIT Press, Cambridge

    Book  Google Scholar 

  53. Zaccarella E, Friederici AD (2015) Merge in the human brain: a sub-region based functional investigation in the left pars opercularis. Front Psychol 6:1818

    Article  PubMed Central  PubMed  Google Scholar 

  54. Hagoort P (2005) On Broca, brain, and binding: a new framework. Trends Cogn Sci 9:416–423

    Article  PubMed  Google Scholar 

  55. Jackendoff R (2002) Foundations of language: brain, meaning, grammar, evolution. Oxford University Press, Oxford

    Book  Google Scholar 

  56. Bastiaansen M, Magyari L, Hagoort P (2010) Syntactic unification operations are reflected in oscillatory dynamics during on-line sentence comprehension. J Cogn Neurosci 22(7):1333–1347

    Article  PubMed  Google Scholar 

  57. Bastiaansen M, Hagoort P (2015) Frequency-based segregation of syntactic and semantic unification during online sentence level language comprehension. J Cogn Neurosci 27(11):2095–2107

    Article  PubMed  Google Scholar 

  58. Lewis AG, Bastiaansen M (2015) A predictive coding framework for rapid neural dynamics during sentence-level language comprehension. Cortex 68:155–168

    Article  PubMed  Google Scholar 

  59. Grimaldi M (2019) From brain noise to syntactic structures: a formal proposal within the oscillatory rhythm perspective. In: Franco L, Lorusso P (eds) Linguistic variation: structure and interpretation. De Gruyter Mouton, Berlin/Boston, pp 293–316. https://doi.org/10.1515/9781501505201-017

    Chapter  Google Scholar 

  60. Rolls ET, Deco G, Huang CC et al (2022) The human language effective connectome. NeuroImage 258:119352

    Article  PubMed  Google Scholar 

  61. Roger E, De Almeida LR, Loevenbruck H et al (2022) Unraveling the functional attributes of the language connectome: crucial subnetworks, flexibility and variability. NeuroImage 263:119672

    Article  CAS  PubMed  Google Scholar 

  62. Hauk O, Weiss B (2020) The neuroscience of natural language processing. Lang Cogn Neurosci 35(5):541–542. https://doi.org/10.1080/23273798.2020.1761989

    Article  Google Scholar 

  63. Hale JT, Campanelli L, Li J, Bhattasali S et al (2022) Neurocomputational models of language processing. Annu Rev Linguist 8(1):427–446

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mirko Grimaldi or Cosimo Iaia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grimaldi, M., Iaia, C. (2023). From Neurons to Language and Speech: An Overview. In: Grimaldi, M., Brattico, E., Shtyrov, Y. (eds) Language Electrified. Neuromethods, vol 202. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3263-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3263-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3262-8

  • Online ISBN: 978-1-0716-3263-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics