Skip to main content

Methods to Analyze Nutritional and Inter-Organ Control of Drosophila Ovarian Germline Stem Cells

  • Protocol
  • First Online:
Germline Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2677))

Abstract

Physiological status, particularly dietary input, has major impacts on the Drosophila melanogaster ovarian germline stem cell lineage. Moreover, several studies have shed light on the role that inter-organ communication plays in coordinating whole-organism responses to changes in physiology. For example, nutrient-sensing signaling pathways function within the fat body to regulate germline stem cells and their progeny in the ovary. Together with its incredible genetic and cell biological toolkits, Drosophila serves as an amenable model organism to use for uncovering molecular mechanisms that underlie physiological control of adult stem cells. In this methods chapter, we describe a general dietary manipulation paradigm, genetic manipulation of adult adipocytes, and whole-mount ovary immunofluorescence to investigate physiological control of germline stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drummond-Barbosa D (2019) Local and physiological control of germline stem cell lineages in Drosophila melanogaster. Genetics 213:9–26. https://doi.org/10.1534/genetics.119.300234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spradling AC (1993) Developmental genetics of oogenesis. In: Michael Bate, University of Cambridge, Alfonso Martinez Arias, University of Cambridge (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, pp 1–70

    Google Scholar 

  3. McLaughlin JM, Bratu DP (2015) Drosophila melanogaster oogenesis: an overview. Methods Mol Biol 1328:1–20. https://doi.org/10.1007/978-1-4939-2851-4_1

    Article  CAS  PubMed  Google Scholar 

  4. Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290:328–330. https://doi.org/10.1126/science.290.5490.328

    Article  CAS  PubMed  Google Scholar 

  5. Song X, Wong MD, Kawase E et al (2004) Bmp signals from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in germline stem cells in the Drosophila ovary. Development 131:1353–1364. https://doi.org/10.1242/dev.01026

    Article  CAS  PubMed  Google Scholar 

  6. Ishibashi JR, Taslim TH, Ruohola-Baker H (2020) Germline stem cell aging in the Drosophila ovary. Curr Opin Insect Sci 37:57–62. https://doi.org/10.1016/j.cois.2019.11.003

    Article  PubMed  Google Scholar 

  7. Ote M, Yamamoto D (2020) Impact of Wolbachia infection on Drosophila female germline stem cells. Curr Opin Insect Sci 37:8–15. https://doi.org/10.1016/j.cois.2019.10.001

    Article  PubMed  Google Scholar 

  8. Hoshino R, Niwa R (2021) Regulation of mating-induced increase in female germline stem cells in the fruit fly Drosophila melanogaster. Front Physiol 12:785435. https://doi.org/10.3389/fphys.2021.785435

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wylie A, Lu W-J, D’Brot A et al (2014) p53 activity is selectively licensed in the Drosophila stem cell compartment. eLife 3:e01530. https://doi.org/10.7554/eLife.01530

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ma X, Han Y, Song X et al (2016) DNA damage-induced Lok/CHK2 activation compromises germline stem cell self-renewal and lineage differentiation. Development 143:4312–4323. https://doi.org/10.1242/dev.141069

    Article  CAS  PubMed  Google Scholar 

  11. Laws KM, Drummond-Barbosa D (2017) Control of germline stem cell lineages by diet and physiology. Results Probl Cell Differ 59:67–99. https://doi.org/10.1007/978-3-319-44820-6_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Drummond-Barbosa D, Spradling AC. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Elsevier Enhanced Reader. https://www.sciencedirect.com/science/article/pii/S0012160600901350/pdfft?isDTMRedir=true&download=true. Accessed 22 Jun 2019

  13. Hsu H-J, Drummond-Barbosa D (2009) Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc Natl Acad Sci U S A 106:1117–1121. https://doi.org/10.1073/pnas.0809144106

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brookheart RT, Swearingen AR, Collins CA et al (2017) High-sucrose-induced maternal obesity disrupts ovarian function and decreases fertility in Drosophila melanogaster. Biochim Biophys Acta Mol basis Dis 1863:1255–1263. https://doi.org/10.1016/j.bbadis.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  15. Liao S, Amcoff M, Nässel DR (2021) Impact of high-fat diet on lifespan, metabolism, fecundity and behavioral senescence in Drosophila. Insect Biochem Mol Biol 133:103495. https://doi.org/10.1016/j.ibmb.2020.103495

    Article  CAS  PubMed  Google Scholar 

  16. Droujinine IA, Perrimon N (2016) Interorgan communication pathways in physiology: focus on drosophila. Annu Rev Genet 50:539–570. https://doi.org/10.1146/annurev-genet-121415-122024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koyama T, Texada MJ, Halberg KA, Rewitz K (2020) Metabolism and growth adaptation to environmental conditions in Drosophila. Cell Mol Life Sci 77:4523–4551. https://doi.org/10.1007/s00018-020-03547-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Armstrong AR, Laws KM, Drummond-Barbosa D (2014) Adipocyte amino acid sensing controls adult germline stem cell number via the amino acid response pathway and independently of target of rapamycin signaling in Drosophila. Development 141:4479–4488. https://doi.org/10.1242/dev.116467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Armstrong AR, Drummond-Barbosa D (2018) Insulin signaling acts in adult adipocytes via GSK-3β and independently of FOXO to control Drosophila female germline stem cell numbers. Dev Biol 440:31–39. https://doi.org/10.1016/j.ydbio.2018.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matsuoka S, Armstrong AR, Sampson LL et al (2017) Adipocyte metabolic pathways regulated by diet control the female germline stem cell lineage in Drosophila melanogaster. Genetics 206:953–971. https://doi.org/10.1534/genetics.117.201921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weaver LN, Drummond-Barbosa D (2018) Maintenance of proper germline stem cell number requires adipocyte collagen in adult drosophila females. Genetics 209:1155–1166. https://doi.org/10.1534/genetics.118.301137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He Y, Jasper H (2014) Studying aging in Drosophila. Methods 68:129–133. https://doi.org/10.1016/j.ymeth.2014.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Piper MDW, Partridge L (2016) Protocols to study aging in drosophila. Methods Mol Biol 1478:291–302. https://doi.org/10.1007/978-1-4939-6371-3_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Troha K, Buchon N (2019) Methods for the study of innate immunity in Drosophila melanogaster technologies > analysis of cell, tissue, and animal phenotypes. Wiley Interdiscip Rev Dev Biol 8(5):e344

    Article  PubMed  Google Scholar 

  25. Piper MD (2017) Using artificial diets to understand the nutritional physiology of Drosophila melanogaster. Curr Opin Insect Sci 23:104–111. https://doi.org/10.1016/j.cois.2017.07.014

    Article  PubMed  Google Scholar 

  26. Armstrong AR (2020) Drosophila melanogaster as a model for nutrient regulation of ovarian function. Reproduction 159:R69–R82. https://doi.org/10.1530/REP-18-0593

    Article  CAS  PubMed  Google Scholar 

  27. Lazareva AA, Roman G, Mattox W et al (2007) A role for the adult fat body in Drosophila male courtship behavior. PLoS Genet 3:e16. https://doi.org/10.1371/journal.pgen.0030016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ables ET, Drummond-Barbosa D (2013) Cyclin E controls Drosophila female germline stem cell maintenance independently of its role in proliferation by modulating responsiveness to niche signals. Development 140:530–540. https://doi.org/10.1242/dev.088583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stobdan T, Sahoo D, Azad P et al (2019) High fat diet induces sex-specific differential gene expression in Drosophila melanogaster. PLoS One 14:e0213474. https://doi.org/10.1371/journal.pone.0213474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Birse RT, Choi J, Reardon K et al (2010) High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab 12:533–544. https://doi.org/10.1016/j.cmet.2010.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoshizaki DK, Lunz R, Ghosh M, Johnson W (1995) Identification of fat-cell enhancer activity in Drosophila melanogaster using P-element enhancer traps. Genome 38:497–506

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alissa R. Armstrong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Simmons, C., Bradshaw, T.W., Armstrong, A.R. (2023). Methods to Analyze Nutritional and Inter-Organ Control of Drosophila Ovarian Germline Stem Cells. In: Buszczak, M. (eds) Germline Stem Cells. Methods in Molecular Biology, vol 2677. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3259-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3259-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3258-1

  • Online ISBN: 978-1-0716-3259-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics