Skip to main content

Genome Editing Inhibits Retinal Angiogenesis in a Mouse Model of Oxygen-Induced Retinopathy

Part of the Methods in Molecular Biology book series (MIMB,volume 2678)

Abstract

This protocol describes a novel approach harnessing the technology of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9-based gene editing for treating retinal angiogenesis. In this system, adeno-associated virus (AAV)-mediated CRISPR/Cas9 was employed to edit the genome of vascular endothelial growth factor receptor (VEGFR)2 in retinal vascular endothelial cells in a mouse model of oxygen-induced retinopathy. The results showed that genome editing of VEGFR2 suppressed pathological retinal angiogenesis. This mouse model mimics a critical aspect of abnormal retinal angiogenesis in patients with neovascular diabetic retinopathy and retinopathy of prematurity, indicating genome editing has high potential for treating angiogenesis-associated retinopathies.

Key words

  • CRISPR/Cas9
  • Vascular endothelial cells
  • Angiogenesis
  • Oxygen-induced retinopathy

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nathan DM (1993) Long-term complications of diabetes mellitus. N Engl J Med 328(23):1676–1685. https://doi.org/10.1056/NEJM199306103282306

    CrossRef  CAS  PubMed  Google Scholar 

  2. Nentwich MM, Ulbig MW (2015) Diabetic retinopathy – ocular complications of diabetes mellitus. World J Diabetes 6(3):489–499. https://doi.org/10.4239/wjd.v6.i3.489

    CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Kimoto K, Kubota T (2012) Anti-VEGF agents for ocular angiogenesis and vascular permeability. J Ophthalmol 2012:852183. https://doi.org/10.1155/2012/852183

    CrossRef  CAS  PubMed  Google Scholar 

  4. Zhao YSR (2018) The role of anti-vascular endothelial growth factor (anti-VEGF) in the management of proliferative diabetic retinopathy. Drugs Context 7:212532

    CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Wang D, Zhang F, Gao G (2020) CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 181(1):136–150. https://doi.org/10.1016/j.cell.2020.03.023

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using staphylococcus aureus Cas9. Nature 520(7546):186–191. https://doi.org/10.1038/nature14299

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li F, Wing K, Wang JH, Luu CD, Bender JA, Chen J, Wang Q, Lu Q, Nguyen Tran MT, Young KM, Wong RCB, Pebay A, Cook AL, Hung SSC, Liu GS, Hewitt AW (2020) Comparison of CRISPR/Cas endonucleases for in vivo retinal gene editing. Front Cell Neurosci 14:570917. https://doi.org/10.3389/fncel.2020.570917

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang X, Zhou G, Wu W, Duan Y, Ma G, Song J, Xiao R, Vandenberghe L, Zhang F, D’Amore PA, Lei H (2017) Genome editing abrogates angiogenesis in vivo. Nat Commun 8(1):112. https://doi.org/10.1038/s41467-017-00140-3

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang X, Zhou G, Wu W, Ma G, D’Amore PA, Mukai S, Lei H (2017) Editing VEGFR2 blocks VEGF-induced activation of Akt and tube formation. Invest Ophthalmol Vis Sci 58(2):1228–1236. https://doi.org/10.1167/iovs.16-20537

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu W, Duan Y, Ma G, Zhou G, Windhol C, D’Amore PA, Lei H (2017) AAV-CRISPR/Cas9-mediated depletion of VEGFR2 blocks angiogenesis in vitro. Invest Ophthalmol Vis Sci 58(14):6082–6090. https://doi.org/10.1167/iovs.17-21902

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81900893) to WW, the Science and Technology Plan Project of Hunan Province (2019RS2011) (WW), the National Natural Science Foundation of China (82070989) to HL, and Introduction Plan of High-Level Foreign Experts (G2022026027L) to HL. No funding bodies had any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hetian Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, W., Lei, H. (2023). Genome Editing Inhibits Retinal Angiogenesis in a Mouse Model of Oxygen-Induced Retinopathy. In: Liu, GS., Wang, JH. (eds) Diabetic Retinopathy. Methods in Molecular Biology, vol 2678. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3255-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3255-0_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3254-3

  • Online ISBN: 978-1-0716-3255-0

  • eBook Packages: Springer Protocols