Skip to main content

Reprogramming Initiator and Nonsense Codons to Simultaneously Install Three Distinct Noncanonical Amino Acids into Proteins in E. coli

  • Protocol
  • First Online:
Genetically Incorporated Non-Canonical Amino Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2676))

  • 754 Accesses

Abstract

Multiple noncanonical amino acids can be installed into proteins in E. coli using mutually orthogonal aminoacyl-tRNA synthetase and tRNA pairs. Here we describe a protocol for simultaneously installing three distinct noncanonical amino acids into proteins for site-specific bioconjugation at three sites. This method relies on an engineered, UAU-suppressing, initiator tRNA, which is aminoacylated with a noncanonical amino acid by Methanocaldococcus jannaschii tyrosyl-tRNA synthetase. Using this initiator tRNA/aminoacyl-tRNA synthetase pair, together with the pyrrolysyl-tRNA synthetase/tRNAPyl pairs from Methanosarcina mazei and Ca. Methanomethylophilus alvus, three noncanonical amino acids can be installed into proteins in response to the UAU, UAG, and UAA codons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wan W, Tharp JM, Liu WR (2014) Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim Biophys Acta 1844(6):1059–1070. https://doi.org/10.1016/j.bbapap.2014.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dumas A, Lercher L, Spicer CD, Davis BG (2015) Designing logical codon reassignment – expanding the chemistry in biology. Chem Sci 6(1):50–69. https://doi.org/10.1039/c4sc01534g

    Article  CAS  PubMed  Google Scholar 

  3. Krahn N, Tharp JM, Crnković A, Söll D (2020) Engineering aminoacyl-tRNA synthetases for use in synthetic biology. Enzyme 48:351–395. https://doi.org/10.1016/bs.enz.2020.06.004

    Article  CAS  Google Scholar 

  4. Young DD, Schultz PG (2018) Playing with the molecules of life. ACS Chem Biol 13(4):854–870. https://doi.org/10.1021/acschembio.7b00974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wan W, Huang Y, Wang Z, Russell WK, Pai P-J, Russell DH, Liu WR (2010) A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. Angew Chem Int Ed Engl 49(18):3211–3214. https://doi.org/10.1002/anie.201000465

    Article  CAS  PubMed  Google Scholar 

  6. Italia JS, Addy PS, Erickson SB, Peeler JC, Weerapana E, Chatterjee A (2019) Mutually orthogonal nonsense-suppression systems and conjugation chemistries for precise protein labeling at up to three distinct sites. J Am Chem Soc 141(15):6204–6212. https://doi.org/10.1021/jacs.8b12954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Drienovská I, Mayer C, Dulson C, Roelfes G (2018) A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue. Nat Chem 10(9):946–952. https://doi.org/10.1038/s41557-018-0082-z

    Article  CAS  PubMed  Google Scholar 

  8. Yu Y, Hu C, Xia L, Wang J (2018) Artificial metalloenzyme design with unnatural amino acids and non-native cofactors. ACS Catal 8(3):1851–1863. https://doi.org/10.1021/acscatal.7b03754

    Article  CAS  Google Scholar 

  9. Owens AE, Iannuzzelli JA, Gu Y, Fasan R (2020) MOrPH-PhD: an integrated phage display platform for the discovery of functional genetically encoded peptide macrocycles. ACS Cent Sci 6(3):368–381. https://doi.org/10.1021/acscentsci.9b00927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang XS, Chen P-HC, Hampton JT, Tharp JM, Reed CA, Das SK, Wang D-S, Hayatshahi HS, Shen Y, Liu J, Liu WR (2019) A genetically encoded, phage-displayed cyclic-peptide library. Angew Chem Int Ed Engl 58(44):15904–15909. https://doi.org/10.1002/anie.201908713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fricke R, Swenson C, Roe LT, Hamlish N, Ad O, Smaga S, Gee CL, Schepartz A (2022) Orthogonal synthetases for polyketide precursors. bioRxiv. https://doi.org/10.1101/2022.02.28.482149

  12. Robertson WE, Funke LFH, de la Torre D, Fredens J, Elliott TS, Spinck M, Christova Y, Cervettini D, Böge FL, Liu KC, Buse S, Maslen S, Salmond GPC, Chin JW (2021) Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 372(6546):1057–1062. https://doi.org/10.1126/science.abg3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen J, Tsai Y-H (2022) Applications of genetic code expansion in studying protein post-translational modification. J Mol Biol 434(8):167424. https://doi.org/10.1016/j.jmb.2021.167424

    Article  CAS  PubMed  Google Scholar 

  14. Neumann H, Slusarczyk AL, Chin JW (2010) De novo generation of mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. J Am Chem Soc 132(7):2142–2144. https://doi.org/10.1021/ja9068722

    Article  CAS  PubMed  Google Scholar 

  15. Chatterjee A, Sun SB, Furman JL, Xiao H, Schultz PG (2013) A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry 52(10):1828–1837. https://doi.org/10.1021/bi4000244

    Article  CAS  PubMed  Google Scholar 

  16. Osgood AO, Zheng Y, Roy SJS, Loynd C, Jewel D, Chatterjee A (2022) An efficient opal-suppressor tryptophanyl pair creates new routes for simultaneously incorporating up to three distinct noncanonical amino acids into proteins in mammalian cells. bioRxiv. https://doi.org/10.1101/2022.08.02.502539

  17. Dunkelmann DL, Willis JCW, Beattie AT, Chin JW (2020) Engineered triply orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs enable the genetic encoding of three distinct non-canonical amino acids. Nat Chem 12(6):535–544. https://doi.org/10.1038/s41557-020-0472-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dunkelmann DL, Oehm SB, Beattie AT, Chin JW (2021) A 68-codon genetic code to incorporate four distinct non-canonical amino acids enabled by automated orthogonal mRNA design. Nat Chem 13(11):1110–1117. https://doi.org/10.1038/s41557-021-00764-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW (2010) Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464(7287):441–444. https://doi.org/10.1038/nature08817

    Article  CAS  PubMed  Google Scholar 

  20. Wang N, Shang X, Cerny R, Niu W, Guo J (2016) Systematic evolution and study of UAGN decoding tRNAs in a genomically recoded bacteria. Sci Rep 6:21898. https://doi.org/10.1038/srep21898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DeBenedictis EA, Söll D, Esvelt KM (2022) Measuring the tolerance of the genetic code to altered codon size. elife 11:e76941. https://doi.org/10.7554/eLife.76941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Krishnakumar R, Ling J (2014) Experimental challenges of sense codon reassignment: an innovative approach to genetic code expansion. FEBS Lett 588(3):383–388. https://doi.org/10.1016/j.febslet.2013.11.039

    Article  CAS  PubMed  Google Scholar 

  23. Schwark DG, Schmitt MA, Biddle W, Fisk JD (2020) The influence of competing tRNA abundance on translation: quantifying the efficiency of sense codon reassignment at rarely used codons. Chembiochem 21(16):2274–2286. https://doi.org/10.1002/cbic.202000052

    Article  CAS  PubMed  Google Scholar 

  24. Tharp JM, Ad O, Amikura K, Ward FR, Garcia EM, Cate JHD, Schepartz A, Söll D (2020) Initiation of protein synthesis with non-canonical amino acids in vivo. Angew Chem Int Ed Engl 59(8):3122–3126. https://doi.org/10.1002/anie.201914671

    Article  CAS  PubMed  Google Scholar 

  25. Tharp JM, Krahn N, Varshney U, Söll D (2020) Hijacking translation initiation for synthetic biology. Chembiochem 21(10):1387–1396. https://doi.org/10.1002/cbic.202000017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tharp JM, Vargas-Rodriguez O, Schepartz A, Söll D (2021) Genetic encoding of three distinct noncanonical amino acids using reprogrammed initiator and nonsense codons. ACS Chem Biol 16(4):766–774. https://doi.org/10.1021/acschembio.1c00120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Amiram M, Haimovich AD, Fan C, Wang Y-S, Aerni H-R, Ntai I, Moonan DW, Ma NJ, Rovner AJ, Hong SH, Kelleher NL, Goodman AL, Jewett MC, Söll D, Rinehart J, Isaacs FJ (2015) Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat Biotechnol 33(12):1272–1279. https://doi.org/10.1038/nbt.3372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Willis JCW, Chin JW (2018) Mutually orthogonal pyrrolysyl-tRNA synthetase/tRNA pairs. Nat Chem 10(8):831–837. https://doi.org/10.1038/s41557-018-0052-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The methods described in this protocol were developed in collaboration with the Center for Genetically Encoded Materials, an NSF Center for Chemical Innovation (CHE-2002182). The authors thank Professors Alanna Schepartz and Dieter Söll for valuable advice on preparing the manuscript. Han-Kai Jiang holds a graduate student fellowship from the Taiwan Academic Talents Overseas Advancement Program from the Ministry of Science and Technology (MOST 110-2917-I-007-006). Jeffery M. Tharp is supported by a Pathway to Independence Award from the National Institute of General Medical Sciences of the National Institutes of Health under award number K99GM141320. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffery M. Tharp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jiang, HK., Tharp, J.M. (2023). Reprogramming Initiator and Nonsense Codons to Simultaneously Install Three Distinct Noncanonical Amino Acids into Proteins in E. coli. In: Tsai, YH., Elsässer, S.J. (eds) Genetically Incorporated Non-Canonical Amino Acids. Methods in Molecular Biology, vol 2676. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3251-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3251-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3250-5

  • Online ISBN: 978-1-0716-3251-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics