Skip to main content

Prediction of Linear B Cell Epitopes in Proteins

  • Protocol
  • First Online:
Computational Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2673))

  • 1079 Accesses

Abstract

The accurate prediction of B cell epitopes is crucial for the design and development of vaccines, especially of those preventive for emerging pathogenic diseases. Preventive vaccines are mainly based on the induction of highly specific neutralizing antibodies. This chapter deals with some prediction methods, which are currently available as user-friendly online servers, to predict B cell epitopes in proteins. A final assessment to validate these predictions is done by recurring to the Immune Epitope Database (IEDB).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zierep PF, Vita R, Blazeska N, Moumbock AFA, Greenbaum JA, Peters B et al (2022) Towards the prediction of non-peptidic epitopes. PLoS Comput Biol 18(2):e1009151. https://doi.org/10.1371/journal.pcbi.1009151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jameson BA, Wolf H (1988) The antigenic index: a novel algorithm for predicting antigenic determinants. Comput Appl Biosci 4:181–186. https://doi.org/10.1093/bioinformatics/4.1.181

    Article  CAS  PubMed  Google Scholar 

  3. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B (2019) The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res 47:D339–D343. https://doi.org/10.1093/nar/gky1006

    Article  CAS  PubMed  Google Scholar 

  4. Sun P, Guo S, Sun J, Tan L, Lu C, Ma Z (2019) Advances in in-silico B-cell epitope prediction. Curr Top Med Chem 19:105–115. https://doi.org/10.2174/1568026619666181130111827

    Article  CAS  PubMed  Google Scholar 

  5. Ashford J, Reis-Cunha J, Lobo I, Lobo F, Campelo F (2021) Organism-specific training improves performance of linear B-cell epitope prediction. Bioinformatics 37:4826–4834. https://doi.org/10.1093/bioinformatics/btab536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ras-Carmona A, Lehmann AA, Lehmann PV, Reche PA (2022) Prediction of B cell epitopes in proteins using a novel sequence similarity-based method. Sci Rep 12:13739. https://doi.org/10.1038/s41598-022-18021-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bahai A, Asgari E, Mofrad MRK, Kloetgen A, McHardy AC (2021) EpitopeVec: linear epitope prediction using deep protein sequence embeddings. Bioinformatics 37:4517–4525. https://doi.org/10.1093/bioinformatics/btab467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Galanis KA, Nastou KC, Papandreou NC, Petichakis GN, Pigis DG, Iconomidou VA (2021) Linear B-cell epitope prediction for in silico vaccine design: a performance review of methods available via command-line interface. Int J Mol Sci 22(6):3210. https://doi.org/10.3390/ijms22063210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9:514. https://doi.org/10.1186/1471-2105-9-514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jespersen MC, Peters B, Nielsen M, Marcatili P (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45:W24–W29. https://doi.org/10.1093/nar/gkx346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu T, Shi K, Li W (2020) Deep learning methods improve linear B-cell epitope prediction. BioData Min 13:1. https://doi.org/10.1186/s13040-020-00211-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ras-Carmona A, Pelaez-Prestel HF, Lafuente EM, Reche PA (2021) BCEPS: a web server to predict linear B cell epitopes with enhanced immunogenicity and cross-reactivity. Cell 10:2744. https://doi.org/10.3390/cells10102744

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan R. de los Toyos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

de los Toyos, J.R. (2023). Prediction of Linear B Cell Epitopes in Proteins. In: Reche, P.A. (eds) Computational Vaccine Design. Methods in Molecular Biology, vol 2673. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3239-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3239-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3238-3

  • Online ISBN: 978-1-0716-3239-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics