Skip to main content

Cryo-electron Microscopy of Protein Cages

  • Protocol
  • First Online:
Protein Cages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2671))

Abstract

Protein cages are one of the most widely studied objects in the field of cryogenic electron microscopy—encompassing natural and synthetic constructs, from enzymes assisting protein folding such as chaperonin to virus capsids. Tremendous diversity of morphology and function is demonstrated by the structure and role of proteins, some of which are nearly ubiquitous, while others are present in few organisms. Protein cages are often highly symmetrical, which helps improve the resolution obtained by cryo-electron microscopy (cryo-EM). Cryo-EM is the study of vitrified samples using an electron probe to image the subject. A sample is rapidly frozen in a thin layer on a porous grid, attempting to keep the sample as close to a native state as possible. This grid is kept at cryogenic temperatures throughout imaging in an electron microscope. Once image acquisition is complete, a variety of software packages may be employed to carry out analysis and reconstruction of three-dimensional structures from the two-dimensional micrograph images. Cryo-EM can be used on samples that are too large or too heterogeneous to be amenable to other structural biology techniques like NMR or X-ray crystallography. In recent years, advances in both hardware and software have provided significant improvements to the results obtained using cryo-EM, recently demonstrating true atomic resolution from vitrified aqueous samples. Here, we review these advances in cryo-EM, especially in that of protein cages, and introduce several tips for situations we have experienced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Borries B, Ruska E, Ruska H (1938) Bakterien und Virus in Übermikroskopischer Aufnahme. Klinische Wochenschrift 17:921–925

    Article  Google Scholar 

  2. Kausche GA, Pfankuch E, Ruska H (1939) Die Sichtbarmachung von pflanzlichem Virus im Übermikroskop. Naturwissenschaften 27:292–299

    Article  Google Scholar 

  3. Ruska H (1940) Die Sichtbarmachung der bakteriophagen Lyse im Übermikroskop. Naturwissenschaften 28:45–46

    Article  CAS  Google Scholar 

  4. Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308:32–36

    Article  CAS  PubMed  Google Scholar 

  5. McMullan G, Faruqi AR, Henderson R (2016) Direct electron detectors. Methods Enzymol 579:1–17

    Article  CAS  PubMed  Google Scholar 

  6. Rohou A, Grigorieff N (2015) CTFFIND4: fast and accurate defocus estimation from electron micrographs. J Struct Biol 192:216–221

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ruskin RS, Yu Z, Grigorieff N (2013) Quantitative characterization of electron detectors for transmission electron microscopy. J Struct Biol 184:385–393

    Article  CAS  PubMed  Google Scholar 

  8. Kühlbrandt W (2014) Biochemistry. The resolution revolution. Science 343:1443–1444

    Article  PubMed  Google Scholar 

  9. Nakane T, Kotecha A, Sente A, McMullan G, Masiulis S, Brown P, Grigoras IT, Malinauskaite L, Malinauskas T, Miehling J, Uchanski T, Yu L, Karia D, Pechnikova EV, de Jong E, Keizer J, Bischoff M, McCormack J, Tiemeijer P, Hardwick SW, Chirgadze DY, Murshudov G, Aricescu AR, Scheres SHW (2020) Single-particle cryo-EM at atomic resolution. Nature 587:152–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yip KM, Fischer N, Paknia E, Chari A, Stark H (2020) Atomic-resolution protein structure determination by cryo-EM. Nature 587:157–161

    Article  CAS  PubMed  Google Scholar 

  11. Frank J (2006) Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state, 2nd edn. Oxford University Press, Oxford/New York

    Book  Google Scholar 

  12. Frank J (2006) Electron tomography methods for three-dimensional visualization of structures in the cell, 2nd edn. Springer, New York

    Google Scholar 

  13. Wan W, Briggs JAG (2016) Chapter thirteen – cryo-electron tomography and subtomogram averaging. In: Crowther RA (ed) Methods in enzymology, vol 579. Academic Press, pp 329–367

    Google Scholar 

  14. Lyumkis D (2019) Challenges and opportunities in cryo-EM single-particle analysis. J Biol Chem 294:5181–5197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Penczek P, Marko M, Buttle K, Frank J (1995) Double-tilt electron tomography. Ultramicroscopy 60:393–410

    Article  CAS  PubMed  Google Scholar 

  16. Tegunov D, Xue L, Dienemann C, Cramer P, Mahamid J (2021) Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. Nature Methods 18:186–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Murata K, Zhang Q, Gerardo Galaz-Montoya J, Fu C, Coleman ML, Osburne MS, Schmid MF, Sullivan MB, Chisholm SW, Chiu W (2017) Visualizing adsorption of cyanophage P-SSP7 onto marine Prochlorococcus. Sci Rep 7:44176

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu X, Zhang Q, Murata K, Baker ML, Sullivan MB, Fu C, Dougherty MT, Schmid MF, Osburne MS, Chisholm SW, Chiu W (2010) Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus. Nat Struct Mol Biol 17:830–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tanaka N, Fujita T, Takahashi Y, Yamasaki J, Murata K, Arai S (2020) Progress in environmental high-voltage transmission electron microscopy for nanomaterials. Philos Trans A Math Phys Eng Sci 378:20190602

    CAS  PubMed  Google Scholar 

  20. Murata K, Kaneko Y (2018) Visualization of DNA compaction in cyanobacteria by high-voltage cryo-electron tomography. J Vis Exp 137:e57197

    Google Scholar 

  21. Murata K, Hagiwara S, Kimori Y, Kaneko Y (2016) Ultrastructure of compacted DNA in cyanobacteria by high-voltage cryo-electron tomography. Sci Rep 6:34934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Okamoto K, Miyazaki N, Song C, Maia F, Reddy HKN, Abergel C, Claverie JM, Hajdu J, Svenda M, Murata K (2017) Structural variability and complexity of the giant Pithovirus sibericum particle revealed by high-voltage electron cryo-tomography and energy-filtered electron cryo-microscopy. Sci Rep 7:13291

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chihara A, Burton-Smith RN, Kajimura N, Mitsuoka K, Okamoto K, Song C, Murata K (2022) A novel capsid protein network allows the characteristic inner membrane structure of Marseilleviridae giant viruses. Sci Rep 12:21428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grant T, Rohou A, Grigorieff N (2018) cisTEM, user-friendly software for single-particle image processing. Elife 7:e35383

    Article  PubMed  PubMed Central  Google Scholar 

  25. Scheres SHW (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296

    Article  CAS  PubMed  Google Scholar 

  27. Heymann JB, Belnap DM (2007) Bsoft: image processing and molecular modeling for electron microscopy. J Struct Biol 157:3–18

    Article  CAS  PubMed  Google Scholar 

  28. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46

    Article  CAS  PubMed  Google Scholar 

  29. Moriya T, Saur M, Stabrin M, Merino F, Voicu H, Huang Z, Penczek PA, Raunser S, Gatsogiannis C (2017) High-resolution single particle analysis from electron cryo-microscopy images using SPHIRE. J Vis Exp 123:e55448

    Google Scholar 

  30. de la Rosa-Trevín JM, Quintana A, Del Cano L, Zaldívar A, Foche I, Gutiérrez J, Gómez-Blanco J, Burguet-Castell J, Cuenca-Alba J, Abrishami V, Vargas J, Otón J, Sharov G, Vilas JL, Navas J, Conesa P, Kazemi M, Marabini R, Sorzano CO, Carazo JM (2016) Scipion: A software framework toward integration, reproducibility and validation in 3D electron microscopy. J Struct Biol 195:93–99

    Article  PubMed  Google Scholar 

  31. Tegunov D, Cramer P (2019) Real-time cryo-electron microscopy data preprocessing with Warp. Nat Methods 16:1146–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grigorieff N (2016) Frealign: an exploratory tool for single-particle cryo-EM. Methods Enzymol 579:191–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116:17–24

    Article  PubMed  Google Scholar 

  34. Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199

    Article  CAS  PubMed  Google Scholar 

  35. Grant T, Grigorieff N (2015) Measuring the optimal exposure for single particle cryo-EM using a 2.6 A reconstruction of rotavirus VP6. Elife 4:e06980

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14:331–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang K (2016) Gctf: real-time CTF determination and correction. J Struct Biol 193:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Iudin A, Korir PK, Salavert-Torres J, Kleywegt GJ, Patwardhan A (2016) EMPIAR: a public archive for raw electron microscopy image data. Nat Methods 13:387–388

    Article  CAS  PubMed  Google Scholar 

  39. Wu M, Lander GC, Herzik MA Jr (2020) Sub-2 Angstrom resolution structure determination using single-particle cryo-EM at 200 keV. J Struct Biol X 4:100020

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Burton-Smith RN, Narayana Reddy HK, Svenda M, Abergel C, Okamoto K, Murata K (2021) The 4.4 Ã… structure of the giant Melbournevirus virion belonging to the Marseilleviridae family. bioRxiv:2021.2007.2014.452405

    Google Scholar 

  41. Russo CJ, Passmore LA (2014) Electron microscopy: ultrastable gold substrates for electron cryomicroscopy. Science 346:1377–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carragher B, Kisseberth N, Kriegman D, Milligan RA, Potter CS, Pulokas J, Reilein A (2000) Leginon: an automated system for acquisition of images from vitreous ice specimens. J Struct Biol 132:33–45

    Article  CAS  PubMed  Google Scholar 

  43. Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51

    Article  PubMed  Google Scholar 

  44. Cheng A, Eng ET, Alink L, Rice WJ, Jordan KD, Kim LY, Potter CS, Carragher B (2018) High resolution single particle cryo-electron microscopy using beam-image shift. J Struct Biol 204:270–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zivanov J, Nakane T, Scheres SHW (2020) Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7:253–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kimanius D, Dong L, Sharov G, Nakane T, Scheres SHW (2021) New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem J 478:4169–4185

    Article  CAS  PubMed  Google Scholar 

  47. Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nature Methods 10:584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thon F (1966) Notizen: Zur Defokussierungsabhängigkeit des Phasenkontrastes bei der elektronenmikroskopischen Abbildung. Zeitschrift für Naturforschung A 21:476–478

    Article  CAS  Google Scholar 

  49. Wagner T, Merino F, Stabrin M, Moriya T, Antoni C, Apelbaum A, Hagel P, Sitsel O, Raisch T, Prumbaum D, Quentin D, Roderer D, Tacke S, Siebolds B, Schubert E, Shaikh TR, Lill P, Gatsogiannis C, Raunser S (2019) SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun Biol 2:218

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lawson CL, Baker ML, Best C, Bi C, Dougherty M, Feng P, van Ginkel G, Devkota B, Lagerstedt I, Ludtke SJ, Newman RH, Oldfield TJ, Rees I, Sahni G, Sala R, Velankar S, Warren J, Westbrook JD, Henrick K, Kleywegt GJ, Berman HM, Chiu W (2011) EMDataBank.org: unified data resource for CryoEM. Nucleic Acids Res 39:D456–D464

    Article  CAS  PubMed  Google Scholar 

  51. Henderson R (2013) Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise. Proc Natl Acad Sci USA 110:18037–18041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Scheres SH, Chen S (2012) Prevention of overfitting in cryo-EM structure determination. Nat Methods 9(9):853–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brilot AF, Chen JZ, Cheng A, Pan J, Harrison SC, Potter CS, Carragher B, Henderson R, Grigorieff N (2012) Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol 177:630–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, Scheres SH (2018) New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7:e42166

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wolf M, DeRosier DJ, Grigorieff N (2006) Ewald sphere correction for single-particle electron microscopy. Ultramicroscopy 106:376–382

    Article  CAS  PubMed  Google Scholar 

  56. Russo CJ, Henderson R (2018) Ewald sphere correction using a single side-band image processing algorithm. Ultramicroscopy 187:26–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  58. Goddard TD, Huang CC, Ferrin TE (2007) Visualizing density maps with UCSF Chimera. J Struct Biol 157:281–287

    Article  CAS  PubMed  Google Scholar 

  59. Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE (2018) UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27:14–25

    Article  CAS  PubMed  Google Scholar 

  60. Kucukelbir A, Sigworth FJ, Tagare HD (2014) Quantifying the local resolution of cryo-EM density maps. Nat Methods 11:63–65

    Article  CAS  PubMed  Google Scholar 

  61. Vilas JL, Gómez-Blanco J, Conesa P, Melero R, Miguel de la Rosa-Trevín J, Otón J, Cuenca J, Marabini R, Carazo JM, Vargas J, Sorzano COS (2018) MonoRes: automatic and accurate estimation of local resolution for electron microscopy maps. Structure 26:337–344 e334

    Article  CAS  PubMed  Google Scholar 

  62. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  63. Casañal A, Lohkamp B, Emsley P (2019) Current developments in coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci 29:1069–1078

    Google Scholar 

  64. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Croll TI (2018) ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D Struct Biol 74:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhu D, Wang X, Fang Q, Van Etten JL, Rossmann MG, Rao Z, Zhang X (2018) Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions. Nat Commun 9:1552

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fang Q, Zhu D, Agarkova I, Adhikari J, Klose T, Liu Y, Chen Z, Sun Y, Gross ML, Van Etten JL, Zhang X, Rossmann MG (2019) Near-atomic structure of a giant virus. Nat Commun 10:388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu S, Luo Y, Wang Y, Li S, Zhao Z, Bi Y, Sun J, Peng R, Song H, Zhu D, Sun Y, Li S, Zhang L, Wang W, Sun Y, Qi J, Yan J, Shi Y, Zhang X, Wang P, Qiu HJ, Gao GF (2019) Cryo-EM structure of the African swine fever virus. Cell Host Microbe 26:836–843 e833

    Article  CAS  PubMed  Google Scholar 

  69. Wang N, Zhao D, Wang J, Zhang Y, Wang M, Gao Y, Li F, Wang J, Bu Z, Rao Z, Wang X (2019) Architecture of African swine fever virus and implications for viral assembly. Science 366:640–644

    Article  CAS  PubMed  Google Scholar 

  70. Pintilie G, Chiu W (2012) Comparison of Segger and other methods for segmentation and rigid-body docking of molecular components in cryo-EM density maps. Biopolymers 97:742–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bhella D (2019) Cryo-electron microscopy: an introduction to the technique, and considerations when working to establish a national facility. Biophys Rev 11:515–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Burton-Smith RN, Murata K (2021) Cryo-electron microscopy of the giant viruses. Microscopy (Oxford) 70:477–486

    Article  CAS  Google Scholar 

  73. Chen S, McMullan G, Faruqi AR, Murshudov GN, Short JM, Scheres SH, Henderson R (2013) High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135:24–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fernandez-Leiro R, Scheres SHW (2017) A pipeline approach to single-particle processing in RELION. Acta Crystallogr D Struct Biol 73:496–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Toussaint L, Bertrand L, Hue L, Crichton RR, Declercq JP (2007) High-resolution X-ray structures of human apoferritin H-chain mutants correlated with their activity and metal-binding sites. J Mol Biol 365:440–452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kenta Okamoto, Martin Svenda, and Chantal Abergel for giving us the opportunity to process the Melbournevirus data. This study was supported by MEXT KAKENHI (JP19H04845 to K.M.), the Joint Research Program of ExCELLS (20-004 to K.M.), and the Cooperative Study Program of NIPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Murata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Burton-Smith, R.N., Murata, K. (2023). Cryo-electron Microscopy of Protein Cages. In: Ueno, T., Lim, S., Xia, K. (eds) Protein Cages. Methods in Molecular Biology, vol 2671. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3222-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3222-2_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3221-5

  • Online ISBN: 978-1-0716-3222-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics