Skip to main content

An Integrative Model for Endophenotypes Relevant to Posttraumatic Stress Disorder (PTSD): Detailed Methodology for Inescapable Tail Shock Stress (IS) and Juvenile Social Exploration (JSE)

  • Protocol
  • First Online:
Translational Methods for PTSD Research

Abstract

Posttraumatic stress disorder (PTSD) is a trauma- and stressor-related disorder that is a source of significant societal and economic costs. Although it is not possible to fully model human psychiatric disorders using animal models, physiological responses to trauma and stressors, including hypothalamic-pituitary-adrenal (HPA) axis responses, autonomic nervous system responses, and immune responses, are highly conserved across mammalian species. Each of these physiological response systems, in turn, has been implicated in determining risk of development of PTSD symptoms, or contributing to PTSD severity, in humans, suggesting that understanding mechanisms underlying these responses may lead to novel therapeutic strategies for the prevention or treatment of PTSD. Furthermore, individual variability in physiological responses to trauma and stressors is thought to be an important determinant of stress vulnerability or stress resilience; therefore, understanding mechanisms underlying individual variability in physiological responses to trauma or stressor exposure has promise to increase our understanding of mechanisms underlying vulnerability to development of PTSD and persistence of PTSD symptoms. Here we describe a model of inescapable stress exposure in rats that has contributed to our understanding of the mechanisms underlying stress vulnerability and stress resilience. Given that PTSD is more common in females than males, we also highlight the need for increased focus on inclusion of both males in females in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sareen J (2018) Posttraumatic stress disorder in adults: epidemiology, pathophysiology, clinical manifestations, course, assessment, and diagnosis. Up to date [online]. Version May 2023

    Google Scholar 

  2. Sandars NK (1972) The epic of Gilgamesh. Penguin, London

    Google Scholar 

  3. Ben-Ezra M (2004) Trauma in antiquity: 4000 year old post-traumatic reactions? Stress Health 20:121–125

    Article  Google Scholar 

  4. Geppert C (2021) An anniversary postponed and a diagnosis delayed: Vietnam and PTSD. Fed Pract 38:200–201

    Google Scholar 

  5. American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders: (5th ed). Arlington, VA

    Google Scholar 

  6. Ross RJ, Ball WA, Sullivan KA et al (1989) Sleep disturbance as the hallmark of posttraumatic stress disorder. Am J Psychiatry 146(6):697–707

    Article  CAS  PubMed  Google Scholar 

  7. Inman DJ, Silver SM, Doghramji K (1990) Sleep disturbance in post-traumatic stress disorder: a comparison with non-PTSD insomnia. J Trauma Stress 3:429–437

    Article  Google Scholar 

  8. Lamarche LJ, De Koninck J (2007) Sleep disturbance in adults with posttraumatic stress disorder: a review. J Clin Psychiatry 68(8):1257–1270

    Article  PubMed  Google Scholar 

  9. Pace-Schott EF, Germain A, Milad MR (2015) Sleep and REM sleep disturbance in the pathophysiology of PTSD: the role of extinction memory. Biol Mood Anxiety Disord 5:1–19

    Article  Google Scholar 

  10. Otis JD, Keane TM, Kerns RD (2003) An examination of the relationship between chronic pain and post-traumatic stress disorder. J Rehabil Res Dev 40:397–406

    Article  PubMed  Google Scholar 

  11. Scioli-Salter ER, Forman DE, Otis JD et al (2015) The shared neuroanatomy and neurobiology of comorbid chronic pain and PTSD: therapeutic implications. Clin J Pain 31:363–374

    Article  PubMed  Google Scholar 

  12. Sharp TJ, Harvey AG (2001) Chronic pain and posttraumatic stress disorder: mutual maintenance? Clin Psychol Rev 21:857–877

    Article  CAS  PubMed  Google Scholar 

  13. Asmundson GJ, Hadjistavropolous HD (2006) Addressing shared vulnerability for comorbid PTSD and chronic pain: a cognitive-behavioral perspective. Cogn Behav Pract 13:8–16

    Article  Google Scholar 

  14. Shipherd JC, Keyes M, Jovanovic T et al (2007) Veterans seeking treatment for posttraumatic stress disorder: what about comorbid chronic pain? J Rehabil Res Dev 44:153–166

    Article  PubMed  Google Scholar 

  15. Moeller-Bertram T, Keltner J, Strigo IA (2012) Pain and post traumatic stress disorder – review of clinical and experimental evidence. Neuropharmacology 62:586–597

    Article  CAS  PubMed  Google Scholar 

  16. Boudreaux E, Kilpatrick G, Resnick HS et al (1998) Criminal victimization, posttraumatic stress disorder, and comorbid psychopathology among a community sample of women. J Trauma Stress 11:665–678

    Article  CAS  PubMed  Google Scholar 

  17. Swart S, Wildschut M, Draijer N et al (2020) Dissociative subtype of posttraumatic stress disorder or PTSD with comorbid dissociative disorders: comparative evaluation of clinical profiles. Psychol Trauma 12:38–45

    Google Scholar 

  18. Britvić D, Antičević V, Kaliterna M et al (2015) Comorbidities with Posttraumatic Stress Disorder (PTSD) among combat veterans: 15 years postwar analysis. Int J Clin Health Psychol 15:81–92

    Article  PubMed  Google Scholar 

  19. Pace TW, Heim CM (2011) A short review on the psychoneuroimmunology of posttraumatic stress disorder: from risk factors to medical comorbidities. Brain Behav Immun 25:6–13

    Article  CAS  PubMed  Google Scholar 

  20. Xu Y, Vandeleur C, Müller M et al (2021) Retrospectively assessed trajectories of PTSD symptoms and their subsequent comorbidities. J Psychiatr Res 136:71–79

    Article  PubMed  Google Scholar 

  21. McFarlane AC, Bookless C (2001) The effect of PTSD on interpersonal relationships: issues for emergency service workers. Sex Relatsh Ther 16:261–267

    Article  Google Scholar 

  22. Laffaye C, Cavella S, Drescher K et al (2008) Relationships among PTSD symptoms, social support, and support source in veterans with chronic PTSD. J Trauma Stress 21:394–401

    Article  PubMed  Google Scholar 

  23. Fox J, Desai MM, Britten K et al (2012) Mental-health conditions, barriers to care, and productivity loss among officers in an urban police department. Conn Med 76:525–531

    Google Scholar 

  24. Milligan-Saville J, Choi I, Deady M et al (2018) The impact of trauma exposure on the development of PTSD and psychological distress in a volunteer fire service. Psychiatry Res 270:1110–1115

    Article  PubMed  Google Scholar 

  25. Chopko BA, Palmieri PA, Adams RE (2018) Relationships among traumatic experiences, PTSD, and posttraumatic growth for police officers: a path analysis. Psychol Trauma 10:183–189

    Google Scholar 

  26. Dams J, Rimane E, Steil R et al (2020) Health-related quality of life and costs of posttraumatic stress disorder in adolescents and young adults in Germany. Front Psychiatry 11:697

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ehlers A, Clark DM (2000) A cognitive model of posttraumatic stress disorder. Behav Res Ther 38:319–345

    Article  CAS  PubMed  Google Scholar 

  28. Engelhard IM, Macklin ML, McNally RJ et al (2001) Emotion- and intrusion-based reasoning in Vietnam veterans with and without chronic posttraumatic stress disorder. Behav Res Ther 39:1339–1348

    Google Scholar 

  29. Engelhard IM, Hout MA van den, Arntz A et al (2002) A longitudinal study of “intrusion-based reasoning” and posttraumatic stress disorder after exposure to a train disaster. Behav Res Ther 40:1415–1424

    Article  PubMed  Google Scholar 

  30. Fortier MA, DiLillo D, Messman-Moore TL et al (2009) Severity of child sexual abuse and revictimization: the mediating role of coping and trauma symptoms. Psychol Women Q 33:308–320

    Article  Google Scholar 

  31. Bistricky SL, Gallagher MW, Roberts CM et al (2017) Frequency of interpersonal trauma types, avoidant attachment, self-compassion, and interpersonal competence: a model of persisting posttraumatic symptoms. J Aggress Maltreat Trauma 26:608–625

    Article  Google Scholar 

  32. Campbell SB, Renshaw KD, Kashdan TB et al (2017) A daily diary study of posttraumatic stress symptoms and romantic partner accommodation. Behav Ther 48:222–234

    Article  PubMed  Google Scholar 

  33. Lawrence JW, Fauerbach J, Munster A (1996) Early avoidance of traumatic stimuli predicts chronicity of intrusive thoughts following burn injury. Behav Res Ther 34:643–646

    Article  CAS  PubMed  Google Scholar 

  34. Boeding SE, Paprocki CM, Baucom DH et al (2013) Let me check that for you: symptom accommodation in romantic partners of adults with obsessive–compulsive disorder. Behav Res Ther 51:316–322

    Article  PubMed  Google Scholar 

  35. Eisma MC, Stroebe MS, Schut HA et al (2013) Avoidance processes mediate the relationship between rumination and symptoms of complicated grief and depression following loss. J Abnorm Psychol 122:961–970

    Google Scholar 

  36. Rapee RM, Peters L, Carpenter L et al (2015) The Yin and Yang of support from significant others: influence of general social support and partner support of avoidance in the context of treatment for social anxiety disorder. Behav Res Ther 69:40–47

    Article  PubMed  Google Scholar 

  37. Belleville G, Guay S, Marchand A (2011) Persistence of sleep disturbances following cognitive-behavior therapy for posttraumatic stress disorder. J Psychosom Res 70:318–327

    Article  PubMed  Google Scholar 

  38. Liempt S van (2012) Sleep disturbances and PTSD: a perpetual circle? Eur J Psychotraumatol 3:19142

    Article  Google Scholar 

  39. Jaoude P, Vermont LN, Porhomayon J et al (2015) Sleep-disordered breathing in patients with post-traumatic stress disorder. Ann Am Thorac Soc 12:259–268

    Article  PubMed  Google Scholar 

  40. Wyk M van, Thomas KG, Solms M et al (2016) Prominence of hyperarousal symptoms explains variability of sleep disruption in posttraumatic stress disorder. Psychol Trauma 8:688–696

    Google Scholar 

  41. Hurtado-Alvarado G, Domínguez-Salazar E, Pavon L et al (2016) Blood-brain barrier disruption induced by chronic sleep loss: low-grade inflammation may be the link. J Immunol Res 2016:4576012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Groer MW, Kane B, Williams SN et al (2015) Relationship of PTSD symptoms with combat exposure, stress, and inflammation in American soldiers. Biol Res Nurs 17:303–310

    Article  PubMed  Google Scholar 

  43. Loupy KM, Lowry CA (2019) Posttraumatic stress disorder and the gut microbiome. In: The Oxford Handbook of the Microbiome-Gut-Brain Axis. Oxford University Press, Oxford

    Google Scholar 

  44. Langgartner D, Lowry CA, Reber SO (2019) Old Friends, immunoregulation, and stress resilience. Pflugers Arch 471:237–269

    Article  CAS  PubMed  Google Scholar 

  45. Kim TD, Lee S, Yoon S (2020) Inflammation in post-traumatic stress disorder (PTSD): a review of potential correlates of PTSD with a neurological perspective. Antioxidants (Basel) 9:107

    Article  CAS  PubMed  Google Scholar 

  46. Bersani FS, Mellon SH, Lindqvist D et al (2020) Novel pharmacological targets for combat PTSD – metabolism, inflammation, the gut microbiome, and mitochondrial dysfunction. Mil Med 185:311–318

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lev-Wiesel R (2007) Intergenerational transmission of trauma across three generations: a preliminary study. Qual Soc Work Res Pract 6:75–94

    Article  Google Scholar 

  48. Dekel R, Goldblatt H (2008) Is there intergenerational transmission of trauma? The case of combat veterans’ children. Am J Orthop 78:281–289

    Article  Google Scholar 

  49. Aguiar W, Halseth R (2015) Aboriginal Peoples and Historic Trauma: The Processes of Intergenerational Transmission. National Collaborating Centre for Aboriginal Health. Prince George, BC

    Google Scholar 

  50. Yehuda R, Lehrner A (2018) Intergenerational transmission of trauma effects: putative role of epigenetic mechanisms. World Psychiatry 17:243–257

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lünnemann M, Van der Horst F, Prinzie P et al (2019) The intergenerational impact of trauma and family violence on parents and their children. Child Abuse Negl 96:104134

    Article  PubMed  Google Scholar 

  52. Anderson RE, Edwards L-J, Silver KE et al (2018) Intergenerational transmission of child abuse: predictors of child abuse potential among racially diverse women residing in domestic violence shelters. Child Abuse Negl 85:80–90

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hoffart R, Jones NA (2018) Intimate partner violence and intergenerational trauma among Indigenous women. Int Crim Justice Rev 28:25–44

    Article  Google Scholar 

  54. Menzies P (2010) Intergenerational trauma from a mental health perspective. Native Social Work Journal 7:63–85

    Google Scholar 

  55. Başoǧlu M, Kiliç C, Şalcioǧlu E et al (2004) Prevalence of posttraumatic stress disorder and comorbid depression in earthquake survivors in Turkey: an epidemiological study. J Trauma Stress 17:133–141

    Google Scholar 

  56. Salcioglu E, Basoglu M, Livanou M (2007) Post-traumatic stress disorder and comorbid depression among survivors of the 1999 earthquake in Turkey. Disasters 31:115–129

    Article  PubMed  Google Scholar 

  57. Adams SW, Bowler RM, Russell K et al (2019) PTSD and comorbid depression: social support and self-efficacy in World Trade Center tower survivors 14–15 years after 9/11. Psychol Trauma Theory Res Pract Policy 11:156–164

    Google Scholar 

  58. Campbell DG, Felker BL, Liu C-F et al (2007) Prevalence of depression–PTSD comorbidity: implications for clinical practice guidelines and primary care-based interventions. J Gen Intern Med 22:711–718

    Article  PubMed  PubMed Central  Google Scholar 

  59. Panagioti M, Gooding P, Tarrier N (2009) Post-traumatic stress disorder and suicidal behavior: a narrative review. Clin Psychol Rev 29:471–482

    Article  PubMed  Google Scholar 

  60. Krysinska K, Lester D (2010) Post-traumatic stress disorder and suicide risk: a systematic review. Arch Suicide Res 14:1–23

    Article  PubMed  Google Scholar 

  61. Panagioti M, Gooding PA, Tarrier N (2012) A meta-analysis of the association between posttraumatic stress disorder and suicidality: the role of comorbid depression. Compr Psychiatry 53:915–930

    Article  PubMed  Google Scholar 

  62. Zatti C, Rosa V, Barros A et al (2017) Childhood trauma and suicide attempt: a meta-analysis of longitudinal studies from the last decade. Psychiatry Res 256:353–358

    Article  PubMed  Google Scholar 

  63. Panagioti M, Gooding PA, Triantafyllou K et al (2015) Suicidality and posttraumatic stress disorder (PTSD) in adolescents: a systematic review and meta-analysis. Soc Psychiatry Psychiatr Epidemiol 50:525–537

    Article  PubMed  Google Scholar 

  64. Fox V, Dalman C, Dal H et al (2021) Suicide risk in people with post-traumatic stress disorder: a cohort study of 3.1 million people in Sweden. J Affect Disord 279:609–616

    Article  PubMed  PubMed Central  Google Scholar 

  65. Charak R, Armour C, Elklit A et al (2014) Factor structure of PTSD, and relation with gender in trauma survivors from India. Eur J Psychotraumatol 5:25547

    Article  PubMed  Google Scholar 

  66. Meer CA van der, Bakker A, Smit AS et al (2017) Gender and age differences in trauma and PTSD among Dutch treatment-seeking police officers. J Nerv Ment Dis 205:87–92

    Article  Google Scholar 

  67. Olff M (2017) Sex and gender differences in post-traumatic stress disorder: an update. Eur J Psychotraumatol 8:1351204

    Article  PubMed Central  Google Scholar 

  68. Dunlop BW, Kaye JL, Youngner C et al (2014) Assessing treatment-resistant posttraumatic stress disorder: the Emory treatment resistance interview for PTSD (E-TRIP). Behav Sci (Basel) 4:511–527

    Article  PubMed  Google Scholar 

  69. Imel ZE, Laska K, Jakupcak M et al (2013) Meta-analysis of dropout in treatments for posttraumatic stress disorder. J Consult Clin Psychol 81:394–404

    Google Scholar 

  70. Najavits LM (2015) The problem of dropout from “gold standard” PTSD therapies. F1000prime Rep 7:43

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lewis C, Roberts NP, Gibson S et al (2020) Dropout from psychological therapies for post-traumatic stress disorder (PTSD) in adults: systematic review and meta-analysis. Eur J Psychotraumatol 11:1709709

    Article  PubMed  PubMed Central  Google Scholar 

  72. Simpson TL (2002) Women’s treatment utilization and its relationship to childhood sexual abuse history and lifetime PTSD. Subst Abus 23:17–30

    Article  PubMed  Google Scholar 

  73. Najavits LM, Sullivan TP, Schmitz M et al (2004) Treatment utilization by women with PTSD and substance dependence. Am J Addict 13:215–224

    Article  PubMed  Google Scholar 

  74. Peltan JR, Cellucci T (2011) Childhood sexual abuse and substance abuse treatment utilization among substance-dependent incarcerated women. J Subst Abus Treat 41:215–224

    Article  Google Scholar 

  75. Nobles CJ, Valentine SE, Zepeda ED et al (2017) Usual course of treatment and predictors of treatment utilization for patients with posttraumatic stress disorder. J Clin Psychiatry 78:e559–e566

    Article  PubMed  PubMed Central  Google Scholar 

  76. Artime TM, Buchholz KR, Jakupcak M (2019) Mental health symptoms and treatment utilization among trauma-exposed college students. Psychol Trauma Theory Res Pract Policy 11:274–282

    Google Scholar 

  77. Hoge CW, Grossman SH, Auchterlonie JL et al (2014) PTSD treatment for soldiers after combat deployment: low utilization of mental health care and reasons for dropout. Psychiatr Serv 65:997–1004

    Article  PubMed  Google Scholar 

  78. Goetter EM, Bui E, Ojserkis RA et al (2015) A systematic review of dropout from psychotherapy for posttraumatic stress disorder among Iraq and Afghanistan combat veterans. J Trauma Stress 28:401–409

    Article  PubMed  Google Scholar 

  79. Schottenbauer MA, Glass CR, Arnkoff DB et al (2008) Nonresponse and dropout rates in outcome studies on PTSD: review and methodological considerations. Psychiatry 71:134–168

    Article  PubMed  Google Scholar 

  80. Libby DJ, Pilver CE, Desai R (2012) Complementary and alternative medicine in VA specialized PTSD treatment programs. Psychiatr Serv 63:1134–1136

    Article  PubMed  Google Scholar 

  81. Eisenberg DM, Davis RB, Ettner SL et al (1998) Trends in alternative medicine use in the United States, 1990-1997: results of a follow-up national survey. JAMA 280:1569–1575

    Article  CAS  PubMed  Google Scholar 

  82. Kessler RC, Davis RB, Foster DF et al (2001) Long-term trends in the use of complementary and alternative medical therapies in the United States. Ann Intern Med 135:262–268

    Article  CAS  PubMed  Google Scholar 

  83. Barnes PM, Powell-Griner E, McFann K et al (2004) Complementary and alternative medicine use among adults: United States, 2002. In: Seminars in integrative medicine. Elsevier, pp 54–71

    Google Scholar 

  84. Barnes PM, Bloom B, Nahin RL (2008) Complementary and alternative medicine use among adults and children; United States, 2007. Natl Health Stat Report 10(12):1–23

    Google Scholar 

  85. Su D, Li L (2011) Trends in the use of complementary and alternative medicine in the United States: 2002–2007. J Health Care Poor Underserved 22:296–310

    Article  PubMed  Google Scholar 

  86. Clarke TC, Black LI, Stussman BJ et al (2015) Trends in the use of complementary health approaches among adults: United States, 2002–2012. Natl Health Stat Report 79:1–16

    Google Scholar 

  87. Williams JW Jr, Gierisch JM, McDuffie J et al (2012) An overview of complementary and alternative medicine therapies for anxiety and depressive disorders: supplement to efficacy of complementary and alternative medicine therapies for posttraumatic stress disorder. Department of Veterans Affairs, Washington, DC

    Google Scholar 

  88. Hemmings SM, Malan-Muller S, Heuvel LL van den et al (2017) The microbiome in posttraumatic stress disorder and trauma-exposed controls: an exploratory study. Psychosom Med 79:936–946

    Google Scholar 

  89. Malan-Muller S, Valles-Colomer M, Raes J et al (2018) The gut microbiome and mental health: implications for anxiety-and trauma-related disorders. OMICS 22:90–107

    Article  CAS  PubMed  Google Scholar 

  90. Hoisington AJ, Billera DM, Bates KL et al (2018) Exploring service dogs for rehabilitation of veterans with PTSD: a microbiome perspective. Rehabil Psychol 63:575–587

    Google Scholar 

  91. Bajaj JS, Sikaroodi M, Fagan A et al (2019) Posttraumatic stress disorder is associated with altered gut microbiota that modulates cognitive performance in veterans with cirrhosis. Am J Physiol Gastrointest Liver Physiol 317:G661–G669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nikolova VL, Hall MR, Hall LJ et al (2021) Perturbations in gut microbiota composition in psychiatric disorders: a review and meta-analysis. JAMA Psychiatry 78:1343–1354

    Article  PubMed  Google Scholar 

  93. Malan-Muller S, Valles-Colomer M, Foxx CL et al (2022) Exploring the relationship between the gut microbiome and mental health outcomes in a posttraumatic stress disorder cohort relative to trauma-exposed controls. Eur Neuropsychopharmacol 56:24–38

    Article  CAS  PubMed  Google Scholar 

  94. McGowan I (2019) The economic burden of PTSD. A brief review of salient literature. Int J Psychiatry Med 1:20–26

    Google Scholar 

  95. Ferry FR, Brady SE, Bunting BP et al (2015) The economic burden of PTSD in Northern Ireland. J Trauma Stress 28:191–197

    Article  PubMed  Google Scholar 

  96. McCrone P, Knapp M, Cawkill P (2003) Posttraumatic stress disorder (PTSD) in the Armed Forces: health economic considerations. J Trauma Stress 16:519–522

    Article  PubMed  Google Scholar 

  97. Surís A, Lind L, Kashner TM et al (2004) Sexual assault in women veterans: an examination of PTSD risk, health care utilization, and cost of care. Psychosom Med 66:749–756

    Article  PubMed  Google Scholar 

  98. Chan D, Cheadle AD, Reiber G et al (2009) Health care utilization and its costs for depressed veterans with and without comorbid PTSD symptoms. Psychiatr Serv 60:1612–1617

    Article  PubMed  Google Scholar 

  99. McGeary D, Moore M, Vriend CA et al (2011) The evaluation and treatment of comorbid pain and PTSD in a military setting: an overview. J Clin Psychol Med Settings 18:155–163

    Google Scholar 

  100. Vyas KJ, Fesperman SF, Nebeker BJ et al (2016) Preventing PTSD and depression and reducing health care costs in the military: a call for building resilience among service members. Mil Med 181:1240–1247

    Article  PubMed  Google Scholar 

  101. Hardner K, Wolf MR, Rinfrette ES (2018) Examining the relationship between higher educational attainment, trauma symptoms, and internalizing behaviors in child sexual abuse survivors. Child Abuse Negl 86:375–383

    Article  PubMed  Google Scholar 

  102. Bothe T, Jacob J, Kröger C et al (2020) How expensive are post-traumatic stress disorders? Estimating incremental health care and economic costs on anonymised claims data. Eur J Health Econ 21:917–930

    Article  PubMed  PubMed Central  Google Scholar 

  103. Tan SY, Yip A (2018) Hans Selye (1907–1982): founder of the stress theory. Singap Med J 59:170

    Article  Google Scholar 

  104. Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:32–32

    Article  Google Scholar 

  105. Del Giudice M, Buck CL, Chaby LE et al (2018) What is stress? A systems perspective. Integr Comp Biol 58:1019–1032

    PubMed  Google Scholar 

  106. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    Article  PubMed  Google Scholar 

  107. Beauchaine TP, Constantino JN (2017) Redefining the endophenotype concept to accommodate transdiagnostic vulnerabilities and etiological complexity. Biomark Med 11:769–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mullins LJ, Mullins JJ (2004) Insights from the rat genome sequence. Genome Biol 5:1–3

    Article  Google Scholar 

  109. Gibbs RA, Pachter L (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521

    Article  CAS  PubMed  Google Scholar 

  110. Tabakoff B, Hoffman PL (2000) Animal models in alcohol research. Alcohol Res Health 24:77

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Van Den Buuse M, Garner B, Gogos A et al (2005) Importance of animal models in schizophrenia research. Aust N Z J Psychiatry 39:550–557

    Article  PubMed  Google Scholar 

  112. Mogil JS, Davis KD, Derbyshire SW (2010) The necessity of animal models in pain research. Pain 151:12–17

    Article  PubMed  Google Scholar 

  113. Swearengen JR (2012) Biodefense research methodology and animal models. CRC Press, Boca Raton, Florida

    Google Scholar 

  114. Abdullahi A, Amini-Nik S, Jeschke M (2014) Animal models in burn research. Cell Mol Life Sci 71:3241–3255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Budhu S, Wolchok J, Merghoub T (2014) The importance of animal models in tumor immunity and immunotherapy. Curr Opin Genet Dev 24:46–51

    Article  CAS  PubMed  Google Scholar 

  116. Azrin N, Hopwood J, Powell J (1967) A rat chamber and electrode procedure for avoidance conditioning 1. J Exp Anal Behav 10:291–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Skinner B, Campbell S (1947) An automatic shocking-grid apparatus for continuous use. J Comp Physiol Psychol 40:305–37

    Google Scholar 

  118. Sloane H (1964) Scramble patterns and escape learning. J Exp Anal Behav 7:336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ulrich RE, Azrin NH (1962) Reflexive fighting in response to aversive stimulation 1. J Exp Anal Behav 5:511–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Silver MP, Schoenfeld WN, Snapper AG et al (1964) Impedance-voltage functions in the white rat with chronic body electrode implants. Psychon Sci 1:61–62

    Article  Google Scholar 

  121. Weiss J (1967) A tail electrode for unrestrained rats. J Exp Anal Behav 10:85–86

    Google Scholar 

  122. Hall RD, Clayton RJ, Mark RG (1966) A device for the partial restraint of rats in operant conditioning studies. J Exp Anal Behav 9:143–145

    Google Scholar 

  123. Paré WP, Glavin GB (1986) Restraint stress in biomedical research: a review. Neurosci Biobehav Rev 10:339–370

    Article  PubMed  Google Scholar 

  124. Seewoo BJ, Hennessy LA, Feindel KW et al (2020) Validation of chronic restraint stress model in young adult rats for the study of depression using longitudinal multimodal MR imaging. Eneuro 7:ENEURO.0113-20.2020

    Article  PubMed  PubMed Central  Google Scholar 

  125. Clutton-Brock J (1960) Some pain threshold studies with particular reference to thiopentone. Anaesthesia 15:71–72

    Article  CAS  PubMed  Google Scholar 

  126. Spiaggia A, Bodnar RJ, Kelly DD et al (1979) Opiate and non-opiate mechanisms of stress-induced analgesia: cross-tolerance between stressors. Pharmacol Biochem Behav 10:761–765

    Article  CAS  PubMed  Google Scholar 

  127. Grau JW, Hyson RL, Maier SF et al (1981) Long-term stress-induced analgesia and activation of the opiate system. Science 213:1409–1411

    Article  CAS  PubMed  Google Scholar 

  128. Maier SF, Sherman JE, Lewis JW et al (1983) The opioid/nonopioid nature of stress-induced analgesia and learned helplessness. J Exp Psychol Anim Behav Process 9:80–90

    Google Scholar 

  129. Drugan RC, Ader DN, Maier SF (1985) Shock controllability and the nature of stress-induced analgesia. Behav Neurosci 99:791–801

    Google Scholar 

  130. Maier SF (1986) Stressor controllability and stress-induced analgesia. Ann N Y Acad Sci 467:55–72

    Article  CAS  PubMed  Google Scholar 

  131. Maier SF, Watkins LR (1991) Conditioned and unconditioned stress-induced analgesia: stimulus preexposure and stimulus change. Anim Learn Behav 19:295–304

    Article  Google Scholar 

  132. Grisel JE, Fleshner M, Watkins LR et al (1993) Opioid and nonopioid interactions in two forms of stress-induced analgesia. Pharmacol Biochem Behav 45:161–172

    Article  CAS  PubMed  Google Scholar 

  133. Butler RK, Finn DP (2009) Stress-induced analgesia. Prog Neurobiol 88:184–202

    Article  CAS  PubMed  Google Scholar 

  134. Heinke B, Gingl E, Sandkühler J (2011) Multiple targets of μ-opioid receptor-mediated presynaptic inhibition at primary afferent Aδ-and C-fibers. J Neurosci 31:1313–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Koga A, Fujita T, Piao L-H et al (2019) Inhibition by O-desmethyltramadol of glutamatergic excitatory transmission in adult rat spinal substantia gelatinosa neurons. Mol Pain 15:1744806918824243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jones TL, Sweitzer SM, Wilson SP et al (2003) Afferent fiber-selective shift in opiate potency following targeted opioid receptor knockdown. Pain 106:365–371

    Article  CAS  PubMed  Google Scholar 

  137. Ikoma M, Kohno T, Baba H (2007) Differential presynaptic effects of opioid agonists on Aδ-and C-afferent glutamatergic transmission to the spinal dorsal horn. J Neurosci 107:807–812

    CAS  Google Scholar 

  138. Lu Y, Sweitzer SM, Laurito CE et al (2004) Differential opioid inhibition of C-and Aδ-fiber mediated thermonociception after stimulation of the nucleus raphe magnus. Anesth Analg 98:414–419

    Article  CAS  PubMed  Google Scholar 

  139. Brederson J-D, Honda CN (2015) Primary afferent neurons express functional delta opioid receptors in inflamed skin. Brain Res 1614:105–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hohmann AG, Suplita RL, Bolton NM et al (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435:1108–1112

    Article  CAS  PubMed  Google Scholar 

  141. Suplita RL II, Gutierrez T, Fegley D et al (2006) Endocannabinoids at the spinal level regulate, but do not mediate, nonopioid stress-induced analgesia. Neuropharmacology 50:372–379

    Article  CAS  PubMed  Google Scholar 

  142. Rash JA, Aguirre-Camacho A, Campbell TS (2014) Oxytocin and pain: a systematic review and synthesis of findings. Clin J Pain 30:453–462

    Article  PubMed  Google Scholar 

  143. Van der Kolk B, Greenberg M, Boyd H et al (1985) Inescapable shock, neurotransmitters, and addiction to trauma: toward a psychobiology of post traumatic stress. Biol Psychiatry 20:314–325

    Article  PubMed  Google Scholar 

  144. Koba T, Kodama Y, Shimizu K et al (2001) Persistent behavioural changes in rats following inescapable shock stress: a potential model of posttraumatic stress disorder. World J Biol Psychiatry 2:34–37

    Article  CAS  PubMed  Google Scholar 

  145. Thornton JW, Jacobs PD (1971) Learned helplessness in human subjects. J Exp Psychol 87:367–372

    Google Scholar 

  146. Seligman ME (1972) Learned helplessness. Annu Rev Med 23:407–412

    Article  CAS  PubMed  Google Scholar 

  147. Seligman ME, Beagley G (1975) Learned helplessness in the rat. J Comp Physiol Psychol 88:534–541

    Google Scholar 

  148. Maier SF, Seligman ME (1976) Learned helplessness: theory and evidence. J Exp Psychol Gen 105:3–46

    Google Scholar 

  149. Maier SF, Jackson RL (1979) Learned helplessness: all of us were right (and wrong): inescapable shock has multiple effects. In: Psychology of Learning and Motivation. Elsevier, pp 155–218

    Google Scholar 

  150. Jackson RL, Maier SF, Coon DJ (1979) Long-term analgesic effects of inescapable shock and learned helplessness. Science 206:91–93

    Article  CAS  PubMed  Google Scholar 

  151. Vollmayr B, Henn FA (2001) Learned helplessness in the rat: improvements in validity and reliability. Brain Res Protocol 8:1–7

    Article  CAS  Google Scholar 

  152. Dess NK, Minor TR, Brewer J (1989) Suppression of feeding and body weight by inescapable shock: modulation by quinine adulteration, stress reinstatement, and controllability. Physiol Behav 45:975–983

    Article  CAS  PubMed  Google Scholar 

  153. Cassens G, Roffman M, Kuruc A et al (1980) Alterations in brain norepinephrine metabolism induced by environmental stimuli previously paired with inescapable shock. Science 209:1138–1140

    Article  CAS  PubMed  Google Scholar 

  154. Maier SF, Davies S, Grau JW et al (1980) Opiate antagonists and long-term analgesic reaction induced by inescapable shock in rats. J Comp Physiol Psychol 94:1172–1183

    Google Scholar 

  155. Drugan RC, Maier SF (1983) Analgesic and opioid involvement in the shock-elicited activity and escape deficits produced by inescapable shock. Learn Motiv 14:30–47

    Article  Google Scholar 

  156. Stuckey J, Marra S, Minor T et al (1989) Changes in mu opiate receptors following inescapable shock. Brain Research 476:167–169

    Google Scholar 

  157. Li B, Yang C-J, Yue N et al (2013) Clomipramine reverses hypoalgesia/hypoesthesia and improved depressive-like behaviors induced by inescapable shock in rats. Neurosci Lett 541:227–232

    Article  CAS  PubMed  Google Scholar 

  158. Will MJ, Watkins LR, Maier SF (1998) Uncontrollable stress potentiates morphine’s rewarding properties. Pharmacol Biochem Behav 60:655–664

    Article  CAS  PubMed  Google Scholar 

  159. Weiss J, Bailey W, Pohorecky L et al (1980) Stress-induced depression of motor activity correlates with regional changes in brain norepinephrine but not in dopamine. Neurochem Res 5:9–22

    Article  CAS  PubMed  Google Scholar 

  160. Moraska A, Fleshner M (2001) Voluntary physical activity prevents stress-induced behavioral depression and anti-KLH antibody suppression. Am J Phys Regul Integr Comp Phys 281:R484–R489

    CAS  Google Scholar 

  161. Greenwood BN, Foley TE, Day HE et al (2003) Freewheel running prevents learned helplessness/behavioral depression: role of dorsal raphe serotonergic neurons. J Neurosci 23:2889–2898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Vollmayr B, Gass P (2013) Learned helplessness: unique features and translational value of a cognitive depression model. Cell Tissue Res 354:171–178

    Article  PubMed  Google Scholar 

  163. Landgraf D, Long J, Der-Avakian A et al (2015) Dissociation of learned helplessness and fear conditioning in mice: a mouse model of depression. PLoS One 10:e0125892

    Article  PubMed  PubMed Central  Google Scholar 

  164. Cheng Y, Desse S, Martinez A et al (2018) TNFα disrupts blood brain barrier integrity to maintain prolonged depressive-like behavior in mice. Brain Behav Immun 69:556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Daut RA, Ravenel JR, Watkins LR et al (2020) The behavioral and neurochemical effects of an inescapable stressor are time of day dependent. Stress 23:405–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Biederman GB, Furedy JJ (1973) Preference-for-signaled-shock phenomenon: effects of shock modifiability and light reinforcement. J Exp Psychol 100:380

    Article  Google Scholar 

  167. Kelsey JE (1977) Escape acquisition following inescapable shock in the rat. Anim Learn Behav 5:83–92

    Article  Google Scholar 

  168. Jackson RL, Maier SF, Rapaport PM (1978) Exposure to inescapable shock produces both activity and associative deficits in the rat. Learn Motiv 9:69–98

    Article  Google Scholar 

  169. Nick A, Alexander Z, others (1990) Handling habituation and ehlordiazepoxide have different effects on GABA and 5-HT function in the frontal cortex and hippocampus. Eur J Pharmacol 190:229–234

    Article  Google Scholar 

  170. Petty F, Kramer G, Wilson L (1992) Prevention of learned helplessness: in vivo correlation with cortical serotonin. Pharmacol Biochem Behav 43:361–367

    Article  CAS  PubMed  Google Scholar 

  171. Paré WP (1996) Enhanced retrieval of unpleasant memories influenced by shock controllability, shock sequence, and rat strain. Biological Psychiatry 39:808–813

    Article  PubMed  Google Scholar 

  172. Campisi J, Leem TH, Fleshner M (2003) Stress-induced extracellular Hsp72 is a functionally significant danger signal to the immune system. Cell Stress Chaperones 8:272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Campisi J, Fleshner M (2003) Role of extracellular HSP72 in acute stress-induced potentiation of innate immunity in active rats. J Appl Physiol 94:43–52

    Article  CAS  PubMed  Google Scholar 

  174. Kirk RC, Blampied NM (1985) Activity during inescapable shock and subsequent escape avoidance learning: female and male rats. N Z J Psychol 14:9–14

    Google Scholar 

  175. Jenkins J, Williams P, Kramer G et al (2000) 249. The effects of gender and the estrous cycle on learned helplessness in the rat. Biol Psychiatry 47:S76

    Article  Google Scholar 

  176. Jenkins JA, Williams P, Kramer GL et al (2001) The influence of gender and the estrous cycle on learned helplessness in the rat. Biol Psychol 58:147–158

    Article  CAS  PubMed  Google Scholar 

  177. Nickerson M, Kennedy SL, Johnson JD et al (2006) Sexual dimorphism of the intracellular heat shock protein 72 response. J Appl Physiol (1985) 101:566–575

    Article  CAS  PubMed  Google Scholar 

  178. Fonken LK, Frank MG, Gaudet AD et al (2018) Neuroinflammatory priming to stress is differentially regulated in male and female rats. Brain Behav Immun 70:257–267

    Article  PubMed  PubMed Central  Google Scholar 

  179. Baratta MV, Leslie NR, Fallon IP et al (2018) Behavioural and neural sequelae of stressor exposure are not modulated by controllability in females. Eur J Neurosci 47:959–967

    Article  PubMed  PubMed Central  Google Scholar 

  180. Baratta MV, Gruene TM, Dolzani SD et al (2019) Controllable stress elicits circuit-specific patterns of prefrontal plasticity in males, but not females. Brain Struct Funct 224:1831–1843

    Article  PubMed  PubMed Central  Google Scholar 

  181. Tanner MK, Fallon IP, Baratta MV et al (2019) Voluntary exercise enables stress resistance in females. Behav Brain Res 369:111923

    Article  PubMed  PubMed Central  Google Scholar 

  182. Vul’fson S (1897) O psikhicheskom vliianii v rabote sliunnykh zhelez [On psychic influence in the work of the salivary glands]. Trudy obshchestva russkikh vrachei 65:110–113

    Google Scholar 

  183. Minor TR, LoLordo VM (1984) Escape deficits following inescapable shock: the role of contextual odor. J Exp Psychol Anim Behav Process 10:168–181

    Google Scholar 

  184. Minor TR, Jackson RL, Maier SF (1984) Effects of task-irrelevant cues and reinforcement delay on choice-escape learning following inescapable shock: evidence for a deficit in selective attention. J Exp Psychol Anim Behav Process 10:543–556

    Google Scholar 

  185. Maier SF (1990) Role of fear in mediating shuttle escape learning deficit produced by inescapable shock. J Exp Psychol Anim Behav Process 16:137–149

    Google Scholar 

  186. Maier SF, Watkins LR (2005) Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci Biobehav Rev 29:829–841

    Article  CAS  PubMed  Google Scholar 

  187. Chen C-FF, Barnes DC, Wilson DA (2011) Generalized vs. stimulus-specific learned fear differentially modifies stimulus encoding in primary sensory cortex of awake rats. J Neurophysiol 106:3136–3144

    Article  PubMed  PubMed Central  Google Scholar 

  188. Ghosh S, Chattarji S (2015) Neuronal encoding of the switch from specific to generalized fear. Nat Neurosci 18:112–120

    Article  CAS  PubMed  Google Scholar 

  189. Harris JD (1943) Studies on Nonassociative Factors Inherent in conditioning. Williams & Wilkins

    Google Scholar 

  190. Mackintosh N (1974) Classical conditioning: basic operations. The psychology of animal learning, pp 8–40

    Google Scholar 

  191. Kamprath K, Wotjak CT (2004) Nonassociative learning processes determine expression and extinction of conditioned fear in mice. Learn Mem 11:770–786

    Article  PubMed  PubMed Central  Google Scholar 

  192. Perusini JN, Meyer EM, Long VA et al (2016) Induction and expression of fear sensitization caused by acute traumatic stress. Neuropsychopharmacology 41:45–57

    Article  CAS  PubMed  Google Scholar 

  193. Servatius RJ, Ottenweller JE, Natelson BH (1995) Delayed startle sensitization distinguishes rats exposed to one or three stress sessions: further evidence toward an animal model of PTSD. Biol Psychiatry 38:539–546

    Article  CAS  PubMed  Google Scholar 

  194. Mirshekar M, Abrari K, Goudarzi I et al (2013) Systemic administrations of β-estradiol alleviate both conditioned and sensitized fear responses in an ovariectomized rat model of post-traumatic stress disorder. Neurobiol Learn Mem 102:12–19

    Article  CAS  PubMed  Google Scholar 

  195. Thompson R, Strong P, Clark P et al (2014) Repeated fear-induced diurnal rhythm disruptions predict PTSD-like sensitized physiological acute stress responses in F 344 rats. Acta Physiol (Oxf) 211:447–465

    Article  CAS  PubMed  Google Scholar 

  196. Rajbhandari AK, Baldo BA, Bakshi VP (2015) Predator stress-induced CRF release causes enduring sensitization of basolateral amygdala norepinephrine systems that promote PTSD-like startle abnormalities. J Neurosci 35:14270–14285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Maier SF (1990) Diazepam modulation of stress-induced analgesia depends on the type of analgesia. Behav Neurosci 104:339–347

    Google Scholar 

  198. Maier SF, Watkins LR (1998) Stressor controllability, anxiety, and serotonin. Cognit Ther Res 22:595–613

    Article  Google Scholar 

  199. Christianson JP, Benison AM, Jennings J et al (2008) The sensory insular cortex mediates the stress-buffering effects of safety signals but not behavioral control. J Neurosci 28:13703–13711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Weiss JM (1968) Effects of coping responses on stress. J Comp Physiol Psychol 65:251–260

    Google Scholar 

  201. Maier SF, Seligman MEP, Solomon RL (1969) Pavlovian fear conditioning and learned helplessness: Effects on escape and avoidance behavior of (a) the CS-US contingency and (b) the independence of the US and voluntary responding. In Campbell, B.A., and Church, R.M. (Eds.), Punishment. Appleton-Century-Crofts, New York, pp 299–343

    Google Scholar 

  202. Traini C, Evangelista S, Girod V et al (2016) Changes of excitatory and inhibitory neurotransmitters in the colon of rats underwent to the wrap partial restraint stress. Neurogastroenterol Motil 28:1172–1185

    Article  CAS  PubMed  Google Scholar 

  203. Davidson JR, Stein DJ, Shalev AY et al (2004) Posttraumatic stress disorder: acquisition, recognition, course, and treatment. J Neuropsychiatr Clin Neurosci 16:135–147

    Article  Google Scholar 

  204. Jeong M-J, Lee C, Sung K et al (2020) Fear response-based prediction for stress susceptibility to PTSD-like phenotypes. Mol Brain 13:1–9

    Article  CAS  Google Scholar 

  205. Watkins L, Drugan R, Hyson R et al (1984) Opiate and non-opiate analgesia induced by inescapable tail-shock: effects of dorsolateral funiculus lesions and decerebration. Brain Res 291:325–336

    Article  CAS  PubMed  Google Scholar 

  206. Khan S, Liberzon I (2004) Topiramate attenuates exaggerated acoustic startle in an animal model of PTSD. Psychopharmacology 172:225–229

    Article  CAS  PubMed  Google Scholar 

  207. Wang W, Liu Y, Zheng H et al (2008) A modified single-prolonged stress model for post-traumatic stress disorder. Neurosci Lett 441:237–241

    Article  CAS  PubMed  Google Scholar 

  208. Pickens CL, Golden SA, Adams-Deutsch T et al (2009) Long-lasting incubation of conditioned fear in rats. Biol Psychiatry 65:881–886

    Article  PubMed  PubMed Central  Google Scholar 

  209. Pickens CL, Navarre BM, Nair SG (2010) Incubation of conditioned fear in the conditioned suppression model in rats: role of food-restriction conditions, length of conditioned stimulus, and generality to conditioned freezing. Neuroscience 169:1501–1510

    Article  CAS  PubMed  Google Scholar 

  210. Pamplona F, Henes K, Micale V et al (2011) Prolonged fear incubation leads to generalized avoidance behavior in mice. J Psychiatr Res 45:354–360

    Article  CAS  PubMed  Google Scholar 

  211. Estes WK, Skinner BF (1941) Some quantitative properties of anxiety. J Exp Psychol 29:390–400

    Google Scholar 

  212. Masserman JH, Yum K (1946) An analysis of the influence of alcohol on experimental neuroses in cats. Psychosom Med 8:36–52

    Article  CAS  PubMed  Google Scholar 

  213. Conger JJ (1951) The effects of alcohol on conflict behavior in the albino rat. Q J Stud Alcohol 12:1–29

    Article  CAS  PubMed  Google Scholar 

  214. Jacobsen E (1957) The effect of psychotropic drugs under psychic stress. In: Psychotropic drugs. Elsevier Publishing Co, Amsterdam, pp 119–124

    Google Scholar 

  215. Miller NE, Angell JR (1957) Objective techniques for studying motivational effects of drugs on animals. Sympotium on psychotropic drugs

    Google Scholar 

  216. Naess K, Rasmussen EW (1958) Approach-withdrawal responses and other specific behaviour reactions as screening test for tranquillizers. Acta Pharmacol 15:99–114

    Article  CAS  Google Scholar 

  217. Geller I, Seifter J (1960) The effects of meprobamate, barbiturates, d-amphetamine and promazine on experimentally induced conflict in the rat. Psychopharmacologia 1:482–492

    Article  CAS  Google Scholar 

  218. Latane B, Hothersall D (1972) Social attraction in animals. In: Dodwell PC (ed) New Horizons in Psychology 2. Penguin, Baltimore

    Google Scholar 

  219. File SE, Hyde J (1978) Can social interaction be used to measure anxiety? Br J Pharmacol 62:19–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Blanchard RJ, Blanchard DC (1989) Attack and defense in rodents as ethoexperimental models for the study of emotion. Prog Neuro-Psychopharmacol Biol Psychiatry 13:S3–S14

    Article  Google Scholar 

  221. File SE, Seth P (2003) A review of 25 years of the social interaction test. Eur J Pharmacol 463:35–53

    Article  CAS  PubMed  Google Scholar 

  222. Gong Z-H, Li Y-F, Zhao N et al (2006) Anxiolytic effect of agmatine in rats and mice. Eur J Pharmacol 550:112–116

    Article  CAS  PubMed  Google Scholar 

  223. Lapin IP, Mutovkina LG, Ryzov IV et al (1996) Anxiogenic activity of quinolinic acid and kynurenine in the social interaction test in mice. J Psychopharmacol 10:246–249

    Article  CAS  PubMed  Google Scholar 

  224. Kita A, Furukawa K (2008) Involvement of neurosteroids in the anxiolytic-like effects of AC-5216 in mice. Pharmacol Biochem Behav 89:171–178

    Article  CAS  PubMed  Google Scholar 

  225. File SE, Cheeta S, Akanezi C (2001) Diazepam and nicotine increase social interaction in gerbils: a test for anxiolytic action. Brain Res 888:311–313

    Article  CAS  PubMed  Google Scholar 

  226. Cheeta S, Tucci S, Sandhu J et al (2001) Anxiolytic actions of the substance P (NK1) receptor antagonist L-760735 and the 5-HT1A agonist 8-OH-DPAT in the social interaction test in gerbils. Brain Res 915:170–175

    Article  CAS  PubMed  Google Scholar 

  227. Greenberg GD, Westerhuyzen JA van, Bales KL et al (2012) Is it all in the family? The effects of early social structure on neural–behavioral systems of prairie voles (Microtus ochrogaster). Neuroscience 216:46–56

    Google Scholar 

  228. Lee NS, Goodwin NL, Freitas KE et al (2019) Affiliation, aggression, and selectivity of peer relationships in meadow and prairie voles. Front Behav Neurosci 13:52

    Article  PubMed  PubMed Central  Google Scholar 

  229. Normann M (2020) Investigating the behavioral effects of juvenile stress in the prairie vole model. Northern Illinois University ProQuest Dissertations Publishing

    Google Scholar 

  230. Rivera DS, Lindsay CB, Codocedo JF et al (2018) Long-term, fructose-induced metabolic syndrome-like condition is associated with higher metabolism, reduced synaptic plasticity and cognitive impairment in Octodon degus. Mol Neurobiol 55:9169–9187

    Google Scholar 

  231. Rivera DS, Lindsay CB, Oliva CA et al (2021) A multivariate assessment of age-related cognitive impairment in Octodon degus. Front Integr Neurosci 15:719076

    Google Scholar 

  232. Thor D (1979) Olfactory perception and inclusive fitness. Physiol Psychol 7:303–306

    Article  Google Scholar 

  233. Miczek KA (1979) A new test for aggression in rats without aversive stimulation: differential effects of d-amphetamine and cocaine. Psychopharmacology 60:253–259

    Article  CAS  PubMed  Google Scholar 

  234. File SE, Deakin J, Longden A et al (1979) An investigation of the role of the locus coeruleus in anxiety and agonistic behaviour. Brain Res 169:411–420

    Article  CAS  PubMed  Google Scholar 

  235. File SE, Hyde J, MacLeod N (1979) 5, 7-dihydroxytryptamine lesions of dorsal and median raphe nuclei and performance in the social interaction test of anxiety and in a home-cage aggression test. J Affect Disord 1:115–122

    Article  CAS  PubMed  Google Scholar 

  236. Maier DM, Pohorecky LA (1987) The effect of ethanol treatment on social behavior in male rats. Physiol Behav 13:259–268

    CAS  Google Scholar 

  237. Bluthe R-M, Schoenen J, Dantzer R (1990) Androgen-dependent vasopressinergic neurons are involved in social recognition in rats. Brain Res 519:150–157

    Article  CAS  PubMed  Google Scholar 

  238. Dantzer R, Bluthe R-M, Kelley KW (1991) Androgen-dependent vasopressinergic neurotransmission attenuates interleukin-1-induced sickness behavior. Brain Res 557:115–120

    Article  CAS  PubMed  Google Scholar 

  239. Patel HP (2016) Investigating the sensitivity of juvenile social exploration at detecting the affective consequences accompanying chronic neuropathic pain. Mol Pain 12:1744806916656635

    Google Scholar 

  240. Jacobson-Pick S, Audet M-C, Nathoo N et al (2011) Stressor experiences during the juvenile period increase stressor responsivity in adulthood: transmission of stressor experiences. Behav Brain Res 216:365–374

    Article  PubMed  Google Scholar 

  241. Daut RA, Hartsock MJ, Tomczik AC et al (2019) Circadian misalignment has differential effects on affective behavior following exposure to controllable or uncontrollable stress. Behav Brain Res 359:440–445

    Article  PubMed  Google Scholar 

  242. Frank MG, Baratta MV, Zhang K et al (2020) Acute stress induces the rapid and transient induction of caspase-1, gasdermin D and release of constitutive IL-1β protein in dorsal hippocampus. Brain Behav Immun 90:70–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Bilbo SD, Yirmiya R, Amat J et al (2008) Bacterial infection early in life protects against stressor-induced depressive-like symptoms in adult rats. Psychoneuroendocrinology 33:261–269

    Article  PubMed  PubMed Central  Google Scholar 

  244. Christianson JP, Paul ED, Irani M et al (2008) The role of prior stressor controllability and the dorsal raphe nucleus in sucrose preference and social exploration. Behav Brain Res 193:87–93

    Article  PubMed  PubMed Central  Google Scholar 

  245. Christianson JP, Ragole T, Amat J et al (2010) 5-hydroxytryptamine 2C receptors in the basolateral amygdala are involved in the expression of anxiety after uncontrollable traumatic stress. Biol Psychiatry 67:339–345

    Article  CAS  PubMed  Google Scholar 

  246. Christianson JP, Thompson BM, Watkins LR et al (2009) Medial prefrontal cortical activation modulates the impact of controllable and uncontrollable stressor exposure on a social exploration test of anxiety in the rat. Stress 12:445–450

    Article  PubMed  PubMed Central  Google Scholar 

  247. Goshen I, Yirmiya R (2009) Interleukin-1 (IL-1): a central regulator of stress responses. Front Neuroendocrinol 30:30–45

    Article  CAS  PubMed  Google Scholar 

  248. Loupy KM, Cler KE, Marquart BM et al (2021) Comparing the effects of two different strains of mycobacteria, Mycobacterium vaccae NCTC 11659 and M. vaccae ATCC 15483, on stress-resilient behaviors and lipid-immune signaling in rats. Brain Behav Immun 91:212–229

    Google Scholar 

  249. Niesink RJ, Van Ree JM (1982) Short-term isolation increases social interactions of male rats: a parametric analysis. Physiol Behav 29:819–825

    Article  CAS  PubMed  Google Scholar 

  250. Drugan RC, Basile AS, Ha J-H et al (1997) Analysis of the importance of controllable versus uncontrollable stress on subsequent behavioral and physiological functioning. Brain Res Brain Res Protoc 2:69–74

    Article  CAS  PubMed  Google Scholar 

  251. Fleshner M, Maier SF, Lyons DM et al (2011) The neurobiology of the stress-resistant brain. Stress 14:498–502

    Article  PubMed  PubMed Central  Google Scholar 

  252. Rozeske RR, Greenwood BN, Fleshner M et al (2011) Voluntary wheel running produces resistance to inescapable stress-induced potentiation of morphine conditioned place preference. Behav Brain Res 219:378–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Frank MG, Fonken LK, Dolzani SD et al (2018) Immunization with Mycobacterium vaccae induces an anti-inflammatory milieu in the CNS: attenuation of stress-induced microglial priming, alarmins and anxiety-like behavior. Behav Brain Res 73:352–363

    Google Scholar 

  254. Siegmund A, Wotjak CT (2007) A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J Psychiatr Res 41:848–860

    Article  PubMed  Google Scholar 

  255. Golub Y, Mauch CP, Dahlhoff M et al (2009) Consequences of extinction training on associative and non-associative fear in a mouse model of Posttraumatic Stress Disorder (PTSD). Behav Brain Res 205:544–549

    Article  PubMed  Google Scholar 

  256. McNay E Sprague Dawley. https://www.albany.edu/mcnaylab/sd.html

  257. Pan Y, Zhang W-Y, Xia X et al (2006) Effects of icariin on hypothalamic-pituitary-adrenal axis action and cytokine levels in stressed Sprague-Dawley rats. Biol Pharm Bull 29:2399–2403

    Article  CAS  PubMed  Google Scholar 

  258. Fediuc S, Campbell JE, Riddell MC (2006) Effect of voluntary wheel running on circadian corticosterone release and on HPA axis responsiveness to restraint stress in Sprague-Dawley rats. J Appl Physiol (1985) 100:1867–1875

    Article  CAS  PubMed  Google Scholar 

  259. Shi G, Ku B, Yao H (2007) Effects of jieyuwan on HPA axis and immune system in chronic stress models in rats. Zhongguo Zhong Yao Za Zhi 32:1551–1554

    PubMed  Google Scholar 

  260. Knaepen L, Rayen I, Charlier TD et al (2013) Developmental fluoxetine exposure normalizes the long-term effects of maternal stress on post-operative pain in Sprague-Dawley rat offspring. PLoS One 8:e57608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Caruso M, McClintock M, Cavigelli S (2014) Temperament moderates the influence of periadolescent social experience on behavior and adrenocortical activity in adult male rats. Horm Behav 66:517–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Gileta AF, Fitzpatrick CJ, Chitre AS et al (2021) Genetic characterization of outbred Sprague Dawley rats and utility for genome-wide association studies. bioRxiv 412924

    Google Scholar 

  263. White W, Lee C (1998) The development and maintenance of the Crl: CD (SD) IGS BR rat breeding system. Biol Ref Data CD (SD) IGS Rats 8–14

    Google Scholar 

  264. De Boer S, Van der Gugten J, Slangen J (1989) Plasma catecholamine and corticosterone responses to predictable and unpredictable noise stress in rats. Physiol Behav 45:789–795

    Article  PubMed  Google Scholar 

  265. Muscat R, Willner P (1992) Suppression of sucrose drinking by chronic mild unpredictable stress: a methodological analysis. Neurosci Biobehav Rev 16:507–517

    Article  CAS  PubMed  Google Scholar 

  266. Papp M, Muscat R, Willner P (1993) Subsensitivity to rewarding and locomotor stimulant effects of a dopamine agonist following chronic mild stress. Psychopharmacology (Berl) 110:152–158

    Article  CAS  PubMed  Google Scholar 

  267. Gouirand AM, Matuszewich L (2005) The effects of chronic unpredictable stress on male rats in the water maze. Physiol Behav 86:21–31

    Article  CAS  PubMed  Google Scholar 

  268. Katsnelson A (2014) Male researchers stress out rodents. . Nature doi:10.1038/nature.2014.15106

    Google Scholar 

  269. Sorge RE, Martin LJ, Isbester KA et al (2014) Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat Methods 11:629–632

    Google Scholar 

  270. Terashvili MN, Kozak KN, Gebremedhin D et al (2020) Effect of nearby construction activity on endothelial function, sensitivity to nitric oxide, and potassium channel activity in the middle cerebral arteries of rats. J Am Assoc Lab Anim Sci 59:411–422

    PubMed  PubMed Central  Google Scholar 

  271. Dallman MF, Akana SF, Bell ME et al (1999) Warning! Nearby construction can profoundly affect your experiments. Endocrine 11(2):111–113

    Google Scholar 

  272. Bitinas IA (1967) Aggression caused by withdrawal from morphine. [Doctoral dissertation, Western Michigan University], ProQuest Dissertations & Theses Global 1301396

    Google Scholar 

  273. Lal H (1967) Operant control of vocal responding in rats. Psychon Sci 8:35–36

    Article  Google Scholar 

  274. Baker S, Bielajew C (2007) Influence of housing on the consequences of chronic mild stress in female rats. Stress 10:283–293

    Article  CAS  PubMed  Google Scholar 

  275. Azar T, Sharp J, Lawson D (2011) Heart rates of male and female Sprague–Dawley and spontaneously hypertensive rats housed singly or in groups. J Am Assoc Lab Anim Sci 50:175–184

    CAS  PubMed  PubMed Central  Google Scholar 

  276. McGrath J, Drummond G, McLachlan E et al (2010) Guidelines for reporting experiments involving animals: the ARRIVE guidelines. Br J Pharmacol 160:1573–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Percie du Sert N, Hurst V, Ahluwalia A et al (2020) The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J Cereb Blood Flow Metab 40:1769–1777

    Article  PubMed  PubMed Central  Google Scholar 

  278. Frank MG, Fonken LK, Watkins LR et al (2020) Acute stress induces chronic neuroinflammatory, microglial and behavioral priming: a role for potentiated NLRP3 inflammasome activation. Brain Behav Immun 89:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Worley NB (2019) Prefrontal circuit selection in stress and resilience. [Doctoral dissertation, Boston College], ProQuest Dissertations & Theses Global 13885882

    Google Scholar 

  280. Horseman ND, Ehret CF (1982) Glucocorticosteroid injection is a circadian zeitgeber in the laboratory rat. Am J Phys 243:R373–R378

    CAS  Google Scholar 

  281. Xu R, Liu Z, Zhao Y (1991) A study on the circadian rhythm of glucocorticoid receptor. Neuroendocrinology 53:31–36

    Article  CAS  PubMed  Google Scholar 

  282. Deak T, Nguyen KT, Fleshner M et al (1999) Acute stress may facilitate recovery from a subcutaneous bacterial challenge. Neuroimmunomodulation 6:344–354

    Article  CAS  PubMed  Google Scholar 

  283. Stanojević S, Mitić K, Vujić V et al (2007) The influence of stress and methionine-enkephalin on macrophage functions in two inbred rat strains. Life Sci 80:901–909

    Article  PubMed  Google Scholar 

  284. Fleshner M, Campisi J, Deak T et al (2002) Acute stressor exposure facilitates innate immunity more in physically active than in sedentary rats. Am J Phys Regul Integr Comp Phys 282:R1680–R1686

    CAS  Google Scholar 

  285. Campisi J, Leem TH, Fleshner M (2002) Acute stress decreases inflammation at the site of infection: a role for nitric oxide. Physiol Behav 77:291–299

    Article  CAS  PubMed  Google Scholar 

  286. Campisi J, Leem TH, Greenwood BN et al (2003) Habitual physical activity facilitates stress-induced HSP72 induction in brain, peripheral, and immune tissues. Am J Physiol Regul Integr Comp Physiol 284:R520–R530

    Article  CAS  PubMed  Google Scholar 

  287. Gómez F, De Kloet ER, Armario A (1998) Glucocorticoid negative feedback on the HPA axis in five inbred rat strains. Am J Phys Regul Integr Comp Phys 274:R420–R427

    Google Scholar 

  288. Paré WP (1989) Stress ulcer susceptibility and depression in Wistar Kyoto (WKY) rats. Physiol Behav 46:993–998

    Article  PubMed  Google Scholar 

  289. Paré WP (1992) Learning behavior, escape behavior, and depression in an ulcer susceptible rat strain. Integr Physiol Behav Sci 27:130–141

    Article  PubMed  Google Scholar 

  290. Machholz E, Mulder G, Ruiz C et al (2012) Manual restraint and common compound administration routes in mice and rats. J Vis Exp 67:e2771

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Lowry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Andersen, N.D. et al. (2023). An Integrative Model for Endophenotypes Relevant to Posttraumatic Stress Disorder (PTSD): Detailed Methodology for Inescapable Tail Shock Stress (IS) and Juvenile Social Exploration (JSE). In: Pinna, G. (eds) Translational Methods for PTSD Research. Neuromethods, vol 198. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3218-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3218-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3217-8

  • Online ISBN: 978-1-0716-3218-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics