Skip to main content

Structural Studies of Modular Nonribosomal Peptide Synthetases

  • Protocol
  • First Online:
Non-Ribosomal Peptide Biosynthesis and Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2670))

Abstract

The non-ribosomal peptide synthetases (NRPSs) are a family of modular enzymes involved in the production of peptide natural products. Not restricted by the constraints of ribosomal peptide and protein production, the NRPSs are able to incorporate unusual amino acids and other suitable building blocks into the final product. The NRPSs operate with an assembly line strategy in which peptide intermediates are covalently tethered to a peptidyl carrier protein and transported to different catalytic domains for the multiple steps in the biosynthesis. Often the carrier and catalytic domains are joined into a single large multidomain protein. This chapter serves to introduce the NRPS enzymes, using the nocardicin NRPS system as an example that highlights many common features to NRPS biochemistry. We then describe recent advances in the structural biology of NRPSs focusing on large multidomain structures that have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83(3):770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

    Article  CAS  PubMed  Google Scholar 

  2. Süssmuth RD, Mainz A (2017) Nonribosomal peptide synthesis-principles and prospects. Angew Chem Int Ed Engl 56(14):3770–3821. https://doi.org/10.1002/anie.201609079

    Article  CAS  PubMed  Google Scholar 

  3. Keating TA, Ehmann DE, Kohli RM, Marshall CG, Trauger JW, Walsh CT (2001) Chain termination steps in nonribosomal peptide synthetase assembly lines: directed acyl-S-enzyme breakdown in antibiotic and siderophore biosynthesis. Chembiochem 2(2):99–107

    Article  CAS  PubMed  Google Scholar 

  4. Horsman ME, Hari TP, Boddy CN (2016) Polyketide synthase and non-ribosomal peptide synthetase thioesterase selectivity: logic gate or a victim of fate? Nat Prod Rep 33(2):183–202. https://doi.org/10.1039/c4np00148f

    Article  CAS  PubMed  Google Scholar 

  5. Walsh CT (2016) Insights into the chemical logic and enzymatic machinery of NRPS assembly lines. Nat Prod Rep 33(2):127–135. https://doi.org/10.1039/c5np00035a

    Article  CAS  PubMed  Google Scholar 

  6. Walsh CT (2008) The chemical versatility of natural-product assembly lines. Acc Chem Res 41(1):4–10

    Article  CAS  PubMed  Google Scholar 

  7. Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105(2):715–738

    Article  CAS  PubMed  Google Scholar 

  8. Marahiel MA (1997) Protein templates for the biosynthesis of peptide antibiotics. Chem Biol 4(8):561–567

    Article  CAS  PubMed  Google Scholar 

  9. Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides1. Annu Rev Microbiol 58:453–488. https://doi.org/10.1146/annurev.micro.58.030603.123615

    Article  CAS  PubMed  Google Scholar 

  10. Lambalot RH, Gehring AM, Flugel RS, Zuber P, LaCelle M, Marahiel MA, Reid R, Khosla C, Walsh CT (1996) A new enzyme superfamily - the phosphopantetheinyl transferases. Chem Biol 3(11):923–936

    Article  CAS  PubMed  Google Scholar 

  11. Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD (2014) The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 31(1):61–108. https://doi.org/10.1039/c3np70054b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Davidsen JM, Townsend CA (2012) In vivo characterization of nonribosomal peptide synthetases NocA and NocB in the biosynthesis of nocardicin a. Chem Biol 19(2):297–306. https://doi.org/10.1016/j.chembiol.2011.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davidsen JM, Bartley DM, Townsend CA (2013) Non-ribosomal propeptide precursor in nocardicin a biosynthesis predicted from adenylation domain specificity dependent on the MbtH family protein NocI. J Am Chem Soc 135(5):1749–1759. https://doi.org/10.1021/ja307710d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Townsend CA (2016) Convergent biosynthetic pathways to β-lactam antibiotics. Curr Opin Chem Biol 35:97–108. https://doi.org/10.1016/j.cbpa.2016.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Quadri LE, Sello J, Keating TA, Weinreb PH, Walsh CT (1998) Identification of a mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol 5(11):631–645

    Article  CAS  PubMed  Google Scholar 

  16. Drake EJ, Cao J, Qu J, Shah MB, Straubinger RM, Gulick AM (2007) The 1.8 a crystal structure of PA2412, an MbtH-like protein from the pyoverdine cluster of Pseudomonas aeruginosa. J Biol Chem 282(28):20425–20434

    Article  CAS  PubMed  Google Scholar 

  17. Felnagle EA, Barkei JJ, Park H, Podevels AM, McMahon MD, Drott DW, Thomas MG (2010) MbtH-like proteins as integral components of bacterial nonribosomal peptide synthetases. Biochemistry 49(41):8815–8817. https://doi.org/10.1021/bi1012854

    Article  CAS  PubMed  Google Scholar 

  18. Zhang W, Heemstra JR Jr, Walsh CT, Imker HJ (2010) Activation of the pacidamycin PacL adenylation domain by MbtH-like proteins. Biochemistry 49(46):9946–9947. https://doi.org/10.1021/bi101539b

    Article  CAS  PubMed  Google Scholar 

  19. Herbst DA, Boll B, Zocher G, Stehle T, Heide L (2013) Structural basis of the interaction of MbtH-like proteins, putative regulators of nonribosomal peptide biosynthesis, with adenylating enzymes. J Biol Chem 288(3):1991–2003. https://doi.org/10.1074/jbc.M112.420182

    Article  CAS  PubMed  Google Scholar 

  20. Gaudelli NM, Long DH, Townsend CA (2015) β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis. Nature 520:383–387. https://doi.org/10.1038/nature14100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Long DH, Townsend CA (2021) Acyl donor stringency and Dehydroaminoacyl intermediates in beta-lactam formation by a non-ribosomal peptide Synthetase. ACS Chem Biol 16(5):806–812. https://doi.org/10.1021/acschembio.1c00117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gaudelli NM, Townsend CA (2014) Epimerization and substrate gating by a TE domain in β-lactam antibiotic biosynthesis. Nat Chem Biol 10(4):251–258. https://doi.org/10.1038/nchembio.1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Patel KD, d’Andrea FB, Gaudelli NM, Buller AR, Townsend CA, Gulick AM (2019) Structure of a bound peptide phosphonate reveals the mechanism of nocardicin bifunctional thioesterase epimerase-hydrolase half-reactions. Nat Commun 10(1):3868. https://doi.org/10.1038/s41467-019-11740-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cane DE, Walsh CT, Khosla C (1998) Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282(5386):63–68

    Article  CAS  PubMed  Google Scholar 

  25. Keating TA, Walsh CT (1999) Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Curr Opin Chem Biol 3(5):598–606

    Article  CAS  PubMed  Google Scholar 

  26. Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide Synthetases involved in nonribosomal peptide synthesis. Chem Rev 97(7):2651–2674

    Article  CAS  PubMed  Google Scholar 

  27. Ackerley DF, Challis GL, Cryle MJ (2018) Understanding biosynthetic protein-protein interactions. Nat Prod Rep 35(11):1118–1119. https://doi.org/10.1039/c8np90037j

    Article  CAS  PubMed  Google Scholar 

  28. Bloudoff K, Schmeing TM (2017) Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. Biochim Biophys Acta 1865:1587. https://doi.org/10.1016/j.bbapap.2017.05.010

    Article  CAS  Google Scholar 

  29. Bonhomme S, Dessen A, Macheboeuf P (2021) The inherent flexibility of type I non-ribosomal peptide synthetase multienzymes drives their catalytic activities. Open Biol 11(5):200386. https://doi.org/10.1098/rsob.200386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gulick AM (2016) Structural insight into the necessary conformational changes of modular nonribosomal peptide synthetases. Curr Opin Chem Biol 35:89–96. https://doi.org/10.1016/j.cbpa.2016.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gulick AM, Aldrich CC (2018) Trapping interactions between catalytic domains and carrier proteins of modular biosynthetic enzymes with chemical probes. Nat Prod Rep 35(11):1156–1184. https://doi.org/10.1039/c8np00044a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Izore T, Cryle MJ (2018) The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis. Nat Prod Rep 35(11):1120–1139. https://doi.org/10.1039/c8np00038g

    Article  CAS  PubMed  Google Scholar 

  33. Jaremko MJ, Davis TD, Corpuz JC, Burkart MD (2020) Type II non-ribosomal peptide synthetase proteins: structure, mechanism, and protein-protein interactions. Nat Prod Rep 37(3):355–379. https://doi.org/10.1039/c9np00047j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Little RF, Hertweck C (2022) Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis. Nat Prod Rep 39(1):163–205. https://doi.org/10.1039/d1np00035g

    Article  CAS  PubMed  Google Scholar 

  35. Reimer JM, Haque AS, Tarry MJ, Schmeing TM (2018) Piecing together nonribosomal peptide synthesis. Curr Opin Struct Biol 49:104–113. https://doi.org/10.1016/j.sbi.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  36. Corpuz JC, Sanlley JO, Burkart MD (2022) Protein-protein interface analysis of the non-ribosomal peptide synthetase peptidyl carrier protein and enzymatic domains. Synth Syst Biotechnol 7(2):677–688. https://doi.org/10.1016/j.synbio.2022.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  37. Drake EJ, Miller BR, Shi C, Tarrasch JT, Sundlov JA, Allen CL, Skiniotis G, Aldrich CC, Gulick AM (2016) Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Nature 529(7585):235–238. https://doi.org/10.1038/nature16163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gulick AM (2009) Conformational dynamics in the acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem Biol 4:811–827. https://doi.org/10.1021/cb900156h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dekimpe S, Masschelein J (2021) Beyond peptide bond formation: the versatile role of condensation domains in natural product biosynthesis. Nat Prod Rep 38(10):1910–1937. https://doi.org/10.1039/d0np00098a

    Article  CAS  PubMed  Google Scholar 

  40. Samel SA, Czodrowski P, Essen LO (2014) Structure of the epimerization domain of tyrocidine synthetase a. Acta Crystallogr D Biol Crystallogr 70(Pt 5):1442–1452. https://doi.org/10.1107/S1399004714004398

    Article  CAS  PubMed  Google Scholar 

  41. Chen WH, Li K, Guntaka NS, Bruner SD (2016) Interdomain and Intermodule organization in epimerization domain containing nonribosomal peptide Synthetases. ACS Chem Biol 11(8):2293–2303. https://doi.org/10.1021/acschembio.6b00332

    Article  CAS  PubMed  Google Scholar 

  42. Mori S, Pang AH, Lundy TA, Garzan A, Tsodikov OV, Garneau-Tsodikova S (2018) Structural basis for backbone N-methylation by an interrupted adenylation domain. Nat Chem Biol 14(5):428–430. https://doi.org/10.1038/s41589-018-0014-7

    Article  CAS  PubMed  Google Scholar 

  43. Reimer JM, Aloise MN, Harrison PM, Schmeing TM (2016) Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 529(7585):239–242. https://doi.org/10.1038/nature16503

    Article  CAS  PubMed  Google Scholar 

  44. Kinatukara P, Patel KD, Haque AS, Singh R, Gokhale RS, Sankaranarayananan R (2016) Structural insights into the regulation of NADPH binding to reductase domains of nonribosomal peptide synthetases: a concerted loop movement model. J Struct Biol 194(3):368–374. https://doi.org/10.1016/j.jsb.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  45. Miller BR, Gulick AM (2016) Structural biology of nonribosomal peptide synthetases. Methods Mol Biol 1401:3–29. https://doi.org/10.1007/978-1-4939-3375-4_1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tanovic A, Samel SA, Essen LO, Marahiel MA (2008) Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 321(5889):659–663

    Article  CAS  PubMed  Google Scholar 

  47. Allen CL, Gulick AM (2014) Structural and bioinformatic characterization of an Acinetobacter baumannii type II carrier protein. Acta Crystallogr D Biol Crystallogr 70(Pt 6):1718–1725. https://doi.org/10.1107/S1399004714008311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Adams MD, Goglin K, Molyneaux N, Hujer KM, Lavender H, Jamison JJ, MacDonald IJ, Martin KM, Russo T, Campagnari AA, Hujer AM, Bonomo RA, Gill SR (2008) Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol 190(24):8053–8064. https://doi.org/10.1128/JB.00834-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rumbo-Feal S, Gomez MJ, Gayoso C, Alvarez-Fraga L, Cabral MP, Aransay AM, Rodriguez-Ezpeleta N, Fullaondo A, Valle J, Tomas M, Bou G, Poza M (2013) Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells. PLoS One 8(8):e72968. https://doi.org/10.1371/journal.pone.0072968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rumbo-Feal S, Perez A, Ramelot TA, Alvarez-Fraga L, Vallejo JA, Beceiro A, Ohneck EJ, Arivett BA, Merino M, Fiester SE, Kennedy MA, Actis LA, Bou G, Poza M (2017) Contribution of the a. baumannii A1S_0114 gene to the interaction with eukaryotic cells and virulence. Front Cell Infect Microbiol 7:108. https://doi.org/10.3389/fcimb.2017.00108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Clemmer KM, Bonomo RA, Rather PN (2011) Genetic analysis of surface motility in Acinetobacter baumannii. Microbiology 157(Pt 9):2534–2544. https://doi.org/10.1099/mic.0.049791-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the non- ribosomal biosynthesis of gramicidin S. EMBO J 16(14):4174–4183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. May JJ, Kessler N, Marahiel MA, Stubbs MT (2002) Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc Natl Acad Sci U S A 99:12120–12125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71(3):413–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lamb AL (2015) Breaking a pathogen’s iron will: inhibiting siderophore production as an antimicrobial strategy. Biochim Biophys Acta 1854(8):1054–1070. https://doi.org/10.1016/j.bbapap.2015.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ehmann DE, Shaw-Reid CA, Losey HC, Walsh CT (2000) The EntF and EntE adenylation domains of Escherichia coli enterobactin synthetase: sequestration and selectivity in acyl-AMP transfers to thiolation domain cosubstrates. Proc Natl Acad Sci U S A 97(6):2509–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gehring AM, Mori I, Walsh CT (1998) Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37(8):2648–2659

    Article  CAS  PubMed  Google Scholar 

  58. Drake EJ, Nicolai DA, Gulick AM (2006) Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain. Chem Biol 13(4):409–419

    Article  CAS  PubMed  Google Scholar 

  59. Liu J, Duncan K, Walsh CT (1989) Nucleotide sequence of a cluster of Escherichia coli enterobactin biosynthesis genes: identification of entA and purification of its product 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase. J Bacteriol 171(2):791–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nahlik MS, Brickman TJ, Ozenberger BA, McIntosh MA (1989) Nucleotide sequence and transcriptional organization of the Escherichia coli enterobactin biosynthesis cistrons entB and entA. J Bacteriol 171(2):784–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rusnak F, Sakaitani M, Drueckhammer D, Reichert J, Walsh CT (1991) Biosynthesis of the Escherichia coli siderophore enterobactin: sequence of the entF gene, expression and purification of EntF, and analysis of covalent phosphopantetheine. Biochemistry 30(11):2916–2927

    Article  CAS  PubMed  Google Scholar 

  62. Raymond KN, Dertz EA, Kim SS (2003) Enterobactin: an archetype for microbial iron transport. Proc Natl Acad Sci U S A 100(7):3584–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miller BR, Drake EJ, Shi C, Aldrich CC, Gulick AM (2016) Structures of a nonribosomal peptide synthetase module bound to MbtH-like proteins support a highly dynamic domain architecture. J Biol Chem 291(43):22559–22571. https://doi.org/10.1074/jbc.M116.746297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qiao C, Wilson DJ, Bennett EM, Aldrich CC (2007) A mechanism-based aryl carrier protein/thiolation domain affinity probe. J Am Chem Soc 129(20):6350–6351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mitchell CA, Shi C, Aldrich CC, Gulick AM (2012) Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. Biochemistry 51(15):3252–3263. https://doi.org/10.1021/bi300112e

    Article  CAS  PubMed  Google Scholar 

  66. Sundlov JA, Gulick AM (2013) Structure determination of the functional domain interaction of a chimeric nonribosomal peptide synthetase from a challenging crystal with noncrystallographic translational symmetry. Acta Crystallogr D Biol Crystallogr 69(Pt 8):1482–1492. https://doi.org/10.1107/S0907444913009372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sundlov JA, Shi C, Wilson DJ, Aldrich CC, Gulick AM (2012) Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains. Chem Biol 19(2):188–198. https://doi.org/10.1016/j.chembiol.2011.11.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Corpuz JC, Podust LM, Davis TD, Jaremko MJ, Burkart MD (2020) Dynamic visualization of type II peptidyl carrier protein recognition in pyoluteorin biosynthesis. RSC Chem Biol 1(1):8–12. https://doi.org/10.1039/c9cb00015a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kreitler DF, Gemmell EM, Schaffer JE, Wencewicz TA, Gulick AM (2019) The structural basis of N-acyl-alpha-amino-beta-lactone formation catalyzed by a nonribosomal peptide synthetase. Nat Commun 10(1):3432. https://doi.org/10.1038/s41467-019-11383-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gahloth D, Dunstan MS, Quaglia D, Klumbys E, Lockhart-Cairns MP, Hill AM, Derrington SR, Scrutton NS, Turner NJ, Leys D (2017) Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis. Nat Chem Biol 13(9):975–981. https://doi.org/10.1038/nchembio.2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kessler N, Schuhmann H, Morneweg S, Linne U, Marahiel MA (2004) The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J Biol Chem 279(9):7413–7419. https://doi.org/10.1074/jbc.M309658200

    Article  CAS  PubMed  Google Scholar 

  72. Reimer JM, Eivaskhani M, Harb I, Guarne A, Weigt M, Schmeing TM (2019) Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility. Science 366(6466). https://doi.org/10.1126/science.aaw4388

  73. Tarry MJ, Haque AS, Bui KH, Schmeing TM (2017) X-ray crystallography and electron microscopy of cross- and multi-module nonribosomal peptide synthetase proteins reveal a flexible architecture. Structure 25:783–793. https://doi.org/10.1016/j.str.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  74. Katsuyama Y, Sone K, Harada A, Kawai S, Urano N, Adachi N, Moriya T, Kawasaki M, Shin-Ya K, Senda T, Ohnishi Y (2021) Structural and functional analyses of the Tridomain-nonribosomal peptide Synthetase FmoA3 for 4-Methyloxazoline ring formation. Angew Chem Int Ed Engl 60(26):14554–14562. https://doi.org/10.1002/anie.202102760

    Article  CAS  PubMed  Google Scholar 

  75. Muliandi A, Katsuyama Y, Sone K, Izumikawa M, Moriya T, Hashimoto J, Kozone I, Takagi M, Shin-ya K, Ohnishi Y (2014) Biosynthesis of the 4-methyloxazoline-containing nonribosomal peptides, JBIR-34 and -35, in Streptomyces sp. Sp080513GE-23. Chem Biol 21 (8):923-934:923. https://doi.org/10.1016/j.chembiol.2014.06.004

    Article  CAS  Google Scholar 

  76. Marshall CG, Burkart MD, Keating TA, Walsh CT (2001) Heterocycle formation in vibriobactin biosynthesis: alternative substrate utilization and identification of a condensed intermediate. Biochemistry 40(35):10655–10663

    Article  CAS  PubMed  Google Scholar 

  77. Schaffer JE, Reck MR, Prasad NK, Wencewicz TA (2017) β-Lactone formation during product release from a nonribosomal peptide synthetase. Nat Chem Biol 13(7):737–744. https://doi.org/10.1038/nchembio.2374

    Article  CAS  PubMed  Google Scholar 

  78. Scott TA, Heine D, Qin Z, Wilkinson B (2017) An L-threonine transaldolase is required for L-threo-β-hydroxy-α-amino acid assembly during obafluorin biosynthesis. Nat Commun 8:15935. https://doi.org/10.1038/ncomms15935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bloudoff K, Rodionov D, Schmeing TM (2013) Crystal structures of the first condensation domain of CDA Synthetase suggest conformational changes during the synthetic cycle of nonribosomal peptide Synthetases. J Mol Biol 425(17):3137–3150. https://doi.org/10.1016/j.jmb.2013.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Quadri LE, Keating TA, Patel HM, Walsh CT (1999) Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: in vitro reconstitution of aryl-4, 2-bisthiazoline synthetase activity from PchD, PchE, and PchF. Biochemistry 38(45):14941–14954

    Article  CAS  PubMed  Google Scholar 

  81. Ronnebaum TA, Lamb AL (2018) Nonribosomal peptides for iron acquisition: pyochelin biosynthesis as a case study. Curr Opin Struct Biol 53:1–11. https://doi.org/10.1016/j.sbi.2018.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Patel HM, Tao J, Walsh CT (2003) Epimerization of an L-cysteinyl to a D-cysteinyl residue during thiazoline ring formation in siderophore chain elongation by pyochelin synthetase from Pseudomonas aeruginosa. Biochemistry 42(35):10514–10527. https://doi.org/10.1021/bi034840c

    Article  CAS  PubMed  Google Scholar 

  83. Meneely KM, Lamb AL (2012) Two structures of a thiazolinyl imine reductase from Yersinia enterocolitica provide insight into catalysis and binding to the nonribosomal peptide synthetase module of HMWP1. Biochemistry 51(44):9002–9013. https://doi.org/10.1021/bi3011016

    Article  CAS  PubMed  Google Scholar 

  84. Ronnebaum TA, McFarlane JS, Prisinzano TE, Booker SJ, Lamb AL (2019) Stuffed methyltransferase catalyzes the penultimate step of Pyochelin biosynthesis. Biochemistry 58(6):665–678. https://doi.org/10.1021/acs.biochem.8b00716

    Article  CAS  PubMed  Google Scholar 

  85. Wang J, Li D, Chen L, Cao W, Kong L, Zhang W, Croll T, Deng Z, Liang J, Wang Z (2022) Catalytic trajectory of a dimeric nonribosomal peptide synthetase subunit with an inserted epimerase domain. Nat Commun 13(1):592. https://doi.org/10.1038/s41467-022-28284-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yuwen L, Zhang FL, Chen QH, Lin SJ, Zhao YL, Li ZY (2013) The role of aromatic L-amino acid decarboxylase in bacillamide C biosynthesis by bacillus atrophaeus C89. Sci Rep 3:1753. https://doi.org/10.1038/srep01753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fortinez CM, Bloudoff K, Harrigan C, Sharon I, Strauss M, Schmeing TM (2022) Structures and function of a tailoring oxidase in complex with a nonribosomal peptide synthetase module. Nat Commun 13(1):548. https://doi.org/10.1038/s41467-022-28221-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD, Millan C, Park H, Adams C, Glassman CR, DeGiovanni A, Pereira JH, Rodrigues AV, van Dijk AA, Ebrecht AC, Opperman DJ, Sagmeister T, Buhlheller C, Pavkov-Keller T, Rathinaswamy MK, Dalwadi U, Yip CK, Burke JE, Garcia KC, Grishin NV, Adams PD, Read RJ, Baker D (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science 373(6557):871–876. https://doi.org/10.1126/science.abj8754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Work in our lab is supported with funding from the National Institutes of General Medical Sciences, NIH (GM-136235).

Conflict of Interest Statement

The authors declare no conflicts of interest with the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Gulick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Patel, K.D., Ahmed, S.F., MacDonald, M.R., Gulick, A.M. (2023). Structural Studies of Modular Nonribosomal Peptide Synthetases. In: Burkart, M., Ishikawa, F. (eds) Non-Ribosomal Peptide Biosynthesis and Engineering. Methods in Molecular Biology, vol 2670. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3214-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3214-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3213-0

  • Online ISBN: 978-1-0716-3214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics