Skip to main content

Mouse Models of Mucormycosis

  • Protocol
  • First Online:
Antifungal Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2667))

Abstract

Animal models have been crucial in understanding the pathogenesis and developing novel therapeutic approaches for fungal infections in general. This is especially true for mucormycosis, which has a low incidence but is often fatal or debilitating. Mucormycoses are caused by different species, via different routes of infections, and in patients differing in their underlying diseases and risk factors. Consequently, clinically relevant animal models use different types of immunosuppression and infection routes.

This chapter describes how to induce different types of immunosuppression (high dose corticosteroids and induction of leukopenia, respectively) or diabetic ketoacidosis as underlying risk factors for mucormycosis. Furthermore, it provides details on how to perform intranasal application to establish pulmonary infection. Finally, some clinical parameters that can be used for developing scoring systems and define humane endpoints in mice are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binder U, Maurer E, Lass-Flörl C (2014) Mucormycosis--from the pathogens to the disease. Clin Microbiol Infect 20(Suppl 6):60–66. https://doi.org/10.1111/1469-0691.12566

    Article  PubMed  Google Scholar 

  2. Petrikkos G, Skiada A, Lortholary O, Roilides E, Walsh TJ, Kontoyiannis DP (2012) Epidemiology and clinical manifestations of mucormycosis. Clin Infect Dis 54(Suppl 1):S23–S34. https://doi.org/10.1093/cid/cir866

    Article  PubMed  Google Scholar 

  3. Gomes MZ, Lewis RE, Kontoyiannis DP (2011) Mucormycosis caused by unusual mucormycetes, non-Rhizopus, −Mucor, and -Lichtheimia species. Clin Microbiol Rev 24(2):411–445. https://doi.org/10.1128/CMR.00056-10

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lewis RE, Kontoyiannis DP (2013) Epidemiology and treatment of mucormycosis. Future Microbiol 8(9):1163–1175. https://doi.org/10.2217/fmb.13.78

    Article  CAS  PubMed  Google Scholar 

  5. Hassan MIA, Voigt K (2019) Pathogenicity patterns of mucormycosis: epidemiology, interaction with immune cells and virulence factors. Med Mycol 57(Supplement_2):S245–S256. https://doi.org/10.1093/mmy/myz011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kronen R, Liang SY, Bochicchio G, Bochicchio K, Powderly WG, Spec A (2017) Invasive fungal infections secondary to traumatic injury. Int J Infect Dis 62:102–111. https://doi.org/10.1016/j.ijid.2017.07.002

    Article  PubMed  Google Scholar 

  7. Garcia-Hermoso D, Criscuolo A, Lee SC, Legrand M, Chaouat M, Denis B, Lafaurie M, Rouveau M, Soler C, Schaal JV, Mimoun M, Mebazaa A, Heitman J, Dromer F, Brisse S, Bretagne S, Alanio A (2018) Outbreak of invasive wound Mucormycosis in a burn unit due to multiple strains of Mucor circinelloides f. circinelloides resolved by whole-genome sequencing. mBio 9(2). https://doi.org/10.1128/mBio.00573-18

  8. Kyriopoulos EJ, Kyriakopoulos A, Karonidis A, Gravvanis A, Gamatsi I, Tsironis C, Tsoutsos D (2015) Burn injuries and soft tissue traumas complicated by mucormycosis infection: a report of six cases and review of the literature. Ann Burns Fire Disasters 28(4):280–287

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Struck MF, Gille J (2013) Fungal infections in burns: a comprehensive review. Ann Burns Fire Disasters 26(3):147–153

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lelievre L, Garcia-Hermoso D, Abdoul H, Hivelin M, Chouaki T, Toubas D, Mamez AC, Lantieri L, Lortholary O, Lanternier F (2014) Posttraumatic mucormycosis: a nationwide study in France and review of the literature. Medicine 93(24):395–404. https://doi.org/10.1097/md.0000000000000221

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kaur H, Ghosh A, Rudramurthy SM, Chakrabarti A (2018) Gastrointestinal mucormycosis in apparently immunocompetent hosts-A review. Mycoses 61(12):898–908. https://doi.org/10.1111/myc.12798

    Article  PubMed  Google Scholar 

  12. Mitchell SJ, Gray J, Morgan ME, Hocking MD, Durbin GM (1996) Nosocomial infection with Rhizopus microsporus in preterm infants: association with wooden tongue depressors. Lancet 348(9025):441–443

    Article  CAS  PubMed  Google Scholar 

  13. Pana ZD, Seidel D, Skiada A, Groll AH, Petrikkos G, Cornely OA, Roilides E (2016) Invasive mucormycosis in children: an epidemiologic study in European and non-European countries based on two registries. BMC Infect Dis 16(1):667. https://doi.org/10.1186/s12879-016-2005-1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Corzo-Leon DE, Chora-Hernandez LD, Rodriguez-Zulueta AP, Walsh TJ (2018) Diabetes mellitus as the major risk factor for mucormycosis in Mexico: epidemiology, diagnosis, and outcomes of reported cases. Med Mycol 56(1):29–43. https://doi.org/10.1093/mmy/myx017

    Article  PubMed  Google Scholar 

  15. Spellberg B, Edwards J Jr, Ibrahim A (2005) Novel perspectives on mucormycosis: pathophysiology, presentation, and management. Clin Microbiol Rev 18(3):556–569. https://doi.org/10.1128/CMR.18.3.556-569.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jeong W, Keighley C, Wolfe R, Lee WL, Slavin MA, Kong DCM, Chen SC (2019) The epidemiology and clinical manifestations of mucormycosis: a systematic review and meta-analysis of case reports. Clin Microbiol Infect 25(1):26–34. https://doi.org/10.1016/j.cmi.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  17. Skiada A, Pagano L, Groll A, Zimmerli S, Dupont B, Lagrou K, Lass-Florl C, Bouza E, Klimko N, Gaustad P, Richardson M, Hamal P, Akova M, Meis JF, Rodriguez-Tudela JL, Roilides E, Mitrousia-Ziouva A, Petrikkos G (2011) Zygomycosis in Europe: analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis between 2005 and 2007. Clin Microbiol Infect 17:1859. https://doi.org/10.1111/j.1469-0691.2010.03456.x

    Article  CAS  PubMed  Google Scholar 

  18. Roden MM, Zaoutis TE, Buchanan WL, Knudsen TA, Sarkisova TA, Schaufele RL, Sein M, Sein T, Chiou CC, Chu JH, Kontoyiannis DP, Walsh TJ (2005) Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis 5:634–653. CID36019 [pii]. https://doi.org/10.1086/432579

    Article  Google Scholar 

  19. Van Cutsem J, Fransen J, Janssen PA (1988) Experimental zygomycosis due to Rhizopus spp. infection by various routes in Guinea-pigs, rats and mice. Mycoses 31(11):563–578

    Article  PubMed  Google Scholar 

  20. Ibrahim AS (2014) Host-iron assimilation: pathogenesis and novel therapies of mucormycosis. Mycoses 57(Suppl 3):13–17. https://doi.org/10.1111/myc.12232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Balloy V, Huerre M, Latge JP, Chignard M (2005) Differences in patterns of infection and inflammation for corticosteroid treatment and chemotherapy in experimental invasive pulmonary aspergillosis. Infect Immun 73(1):494–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Philippe B, Ibrahim-Granet O, Prevost MC, Gougerot-Pocidalo MA, Sanchez Perez M, Van der Meeren A, Latge JP (2003) Killing of aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates. Infect Immun 71(6):3034–3042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jacobsen ID (2019) Animal models to study Mucormycosis. J Fungi (Basel) 5(2):27. https://doi.org/10.3390/jof5020027

    Article  CAS  PubMed  Google Scholar 

  24. Dos Santos AR, Fraga-Silva TF, de Fátima A-DD, Dos Santos RF, Finato AC, Soares CT, Lara VS, Almeida NLM, Andrade MI, de Arruda OS, de Arruda MSP, Venturini J (2022) IFN-γ mediated signaling improves fungal clearance in experimental pulmonary Mucormycosis. Mycopathologia 187(1):15–30. https://doi.org/10.1007/s11046-021-00598-2

    Article  CAS  PubMed  Google Scholar 

  25. Dos Santos AR, Fraga-Silva TF, Almeida DF, Dos Santos RF, Finato AC, Amorim BC, Andrade MI, Soares CT, Lara VS, Almeida NL, de Arruda OS, de Arruda MS, Venturini J (2020) Rhizopus-host interplay of disseminated mucormycosis in immunocompetent mice. Future Microbiol 15:739–752. https://doi.org/10.2217/fmb-2019-0246

    Article  CAS  PubMed  Google Scholar 

  26. Gebremariam T, Alkhazraji S, Alqarihi A, Wiederhold NP, Najvar LK, Patterson TF, Filler SG, Ibrahim AS (2021) Evaluation of sex differences in murine diabetic ketoacidosis and neutropenic models of invasive mucormycosis. J Fungi (Basel) 7 (4):313. doi:10.3390/jof7040313

    Google Scholar 

  27. Ogino MH, Tadi P (2022) Cyclophosphamide. In: StatPearls (ed) StatPearls Publishing Copyright © 2022. StatPearls Publishing LLC, Treasure Island (FL)

    Google Scholar 

  28. Ahlmann M, Hempel G (2016) The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol 78(4):661–671. https://doi.org/10.1007/s00280-016-3152-1

    Article  CAS  PubMed  Google Scholar 

  29. Allen IC (2014) The utilization of oropharyngeal intratracheal PAMP administration and bronchoalveolar lavage to evaluate the host immune response in mice. J Vis Exp 86:51391. https://doi.org/10.3791/51391

    Article  CAS  Google Scholar 

  30. Ullman-Culleré MH, Foltz CJ (1999) Body condition scoring: a rapid and accurate method for assessing health status in mice. Lab Anim Sci 49(3):319–323

    PubMed  Google Scholar 

  31. Diehl R, Ferrara F, Müller C, Dreyer AY, McLeod DD, Fricke S, Boltze J (2017) Immunosuppression for in vivo research: state-of-the-art protocols and experimental approaches. Cell Mol Immunol 14(2):146–179. https://doi.org/10.1038/cmi.2016.39

    Article  CAS  PubMed  Google Scholar 

  32. Martins TG, Gama JB, Fraga AG, Saraiva M, Silva MT, Castro AG, Pedrosa J (2012) Local and regional re-establishment of cellular immunity during curative antibiotherapy of murine Mycobacterium ulcerans infection. PLoS One 7(2):e32740. https://doi.org/10.1371/journal.pone.0032740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilse D. Jacobsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jacobsen, I.D. (2023). Mouse Models of Mucormycosis. In: Drummond, R.A. (eds) Antifungal Immunity. Methods in Molecular Biology, vol 2667. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3199-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3199-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3198-0

  • Online ISBN: 978-1-0716-3199-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics