Skip to main content

Fluorescent In Situ Detection of RNA–Protein Interactions in Intact Cells by RNA-PLA

  • Protocol
  • First Online:
RNA-Protein Complexes and Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2666))

Abstract

RNA–protein proximity ligation assay (RNA-PLA) enables the detection of specific RNA–protein interactions in fixed cells. In RNA-PLA, bridging and ligation of a circular DNA template occurs if the target RNA and protein are within 40 nanometers of each other. The resulting circular template is amplified by rolling circle amplification and abundantly recognized by fluorescent antisense DNA oligonucleotides. This strategy therefore enables localization of RNA–protein interactions in situ with high specificity and sensitivity. Here, we describe the use of RNA-PLA to detect interactions between a nuclear viral RNA and a host RNA-binding protein in Epstein-Barr virus (EBV)-infected B cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Söderberg O, Gullberg M, Jarvius M et al (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000

    Article  PubMed  Google Scholar 

  2. Zhang W, Xie M, Shu M-D et al (2016) A proximity-dependent assay for specific RNA-protein interactions in intact cells. RNA 22:1785–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xie M, Zhang W, Shu M-D et al (2015) The host integrator complex acts in transcription-independent maturation of herpesvirus microRNA 3′ ends. Genes Dev 29:1552–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown JA, Kinzig CG, DeGregorio SJ et al (2016) Methyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA. Proc Natl Acad Sci 113:14013–14018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lerner MR, Andrews NC, Miller G et al (1981) Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A 78:805–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Glickman JN, Howe JG, Steitz JA (1988) Structural analyses of EBER1 and EBER2 ribonucleoprotein particles present in Epstein-Barr virus-infected cells. J Virol 62:902–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Riley KJ, Rabinowitz GS, Yario TA et al (2012) EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 31:2207–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Navin N, Grubor V, Hicks J et al (2006) PROBER: oligonucleotide FISH probe design software. Bioinformatics 22:2437–2438

    Article  CAS  PubMed  Google Scholar 

  9. Lee N, Moss WN, Yario TA et al (2015) EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell 160:607–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lipovsky A, Zhang W, Iwasaki A et al (2015) Chapter 30: Application of the proximity-dependent assay and fluorescence imaging approaches to study viral entry pathways. Methods Mol Biol 1270:437

    Article  CAS  PubMed  Google Scholar 

  11. Allalou A, Wählby C (2009) BlobFinder, a tool for fluorescence microscopy image cytometry. Comput Methods Prog Biomed 94:58–65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank members of the Xie laboratory for helpful discussion. Initial data in this manuscript were acquired in the laboratory of Daniel DiMaio, and in the laboratory of Joan Steitz at Yale University, with the support of a grant from the National Institute of Health (P01-CA16038). The Xie lab is supported by the National Institute of Health (R35-GM128753 to M.X.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyi Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, T., Zhang, W., Xie, M. (2023). Fluorescent In Situ Detection of RNA–Protein Interactions in Intact Cells by RNA-PLA. In: Lin, RJ. (eds) RNA-Protein Complexes and Interactions. Methods in Molecular Biology, vol 2666. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3191-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3191-1_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3190-4

  • Online ISBN: 978-1-0716-3191-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics