Abstract
Innate resistance and therapeutic-driven development of resistance to anticancer drugs is a common complication of cancer therapy. Understanding mechanisms of drug resistance can lead to development of alternative therapies. One strategy is to subject drug-sensitive and drug-resistant variants to single-cell RNA-seq (scRNA-seq) and to subject the scRNA-seq data to network analysis to identify pathways associated with drug resistance. This protocol describes a computational analysis pipeline to study drug resistance by subjecting scRNA-seq expression data to Passing Attributes between Networks for Data Assimilation (PANDA), an integrative network analysis tool that incorporates protein–protein interactions (PPI) and transcription factor (TF)-binding motifs.
Key words
- Single-cell RNA-sequencing
- Drug resistance network
- Data integration
- Protein–protein interactions
- Transcription factor-binding motifs
- Passing Attributes between Networks for Data Assimilation
- Gene set enrichment analysis
- Connectivity map analysis
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Schnepp PM, Ahmed A, Escara-Wilke J et al (2021) Transcription factor network analysis based on single cell RNA-seq identifies that Trichostatin-a reverses docetaxel resistance in prostate cancer. BMC Cancer 21:1316. https://doi.org/10.1186/s12885-021-09048-0
Glass K, Huttenhower C, Quackenbush J, Yuan GC (2013) Passing messages between biological networks to refine predicted interactions. PLoS One 8(5):e64832. https://doi.org/10.1371/journal.pone.0064832
Glass K, Quackenbush J, Spentzos D et al (2015) A network model for angiogenesis in ovarian cancer. BMC Bioinform 16:115. https://doi.org/10.1186/s12859-015-0551-y
Sonawane AR (2017) Understanding tissue-specific gene regulation. Cell Rep 21(4):1077–1088. https://doi.org/10.1016/j.celrep.2017.10.001
R Core Team (2022) R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Hao Y, Hao S, Andersen-Nissen E et al (2021) Integrated analysis of multimodal single-cell data. Cell 184(13):3573–3587.e29. https://doi.org/10.1016/j.cell.2021.04.048
Dawei L, Guan-tin C (2018) wordcloud2: create word cloud by ‘htmlwidget’. R package version 0.2.1. https://CRAN.R-project.org/package=wordcloud2
Grant CE, Bailey TL, Noble WS (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics 27(7):1017–1018. https://doi.org/10.1093/bioinformatics/btr064
Subramaniana A, Tamayoa P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550. https://doi.org/10.1073/pnas.0506580102
Mootha V, Lindgren C, Erikssonp KF et al (2003) PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273. https://doi.org/10.1038/ng1180
Schnepp PM, Shelley G, Dai J et al (2020) Single-cell transcriptomics analysis identifies nuclear protein 1 as a regulator of docetaxel resistance in prostate cancer cells. Mol Cancer Res 18(9):1290–1301. https://doi.org/10.1158/1541-7786
Lamb J, Crawford ED, Peck D et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313(5795):1929–1935. https://doi.org/10.1126/science.1132939
Acknowledgments
This work was supported by National Cancer Institute awards P01-CA093900 and P30-CA046592 by the use of the following Cancer Center Shared Resources: the Single Cell Spatial Analysis Shared Resource, the Cancer Data Science Shared Resource, and the Single Cell Spatial Analysis Program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
The, S., Schnepp, P.M., Shelley, G., Keller, J.M., Rao, A., Keller, E.T. (2023). Integration of Single-Cell RNA-Sequencing and Network Analysis to Investigate Mechanisms of Drug Resistance. In: Kasid, U.N., Clarke, R. (eds) Cancer Systems and Integrative Biology. Methods in Molecular Biology, vol 2660. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3163-8_7
Download citation
DOI: https://doi.org/10.1007/978-1-0716-3163-8_7
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-3162-1
Online ISBN: 978-1-0716-3163-8
eBook Packages: Springer Protocols