Skip to main content

Isolation and Identification of Plasma Extracellular Vesicles Protein Biomarkers

  • Protocol
  • First Online:
Cancer Systems and Integrative Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2660))

Abstract

Extracellular vesicles (EVs) have emerged as a valuable source for disease biomarkers and an alternative drug delivery system due to their ability to carry cargo and target specific cells. Proper isolation, identification, and analytical strategy are required for evaluating their potential in diagnostics and therapeutics. Here, a method is detailed to isolate plasma EVs and analyze their proteomic profiling, combining EVtrap-based high-recovery EV isolation, phase-transfer surfactant method for protein extraction, and mass spectrometry qualitative and quantitative strategies for EV proteome characterization. The pipeline provides a highly effective EV-based proteome analysis technique that can be applied for EV characterization and evaluation of EV-based diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bazzan E, Tinè M, Casara A et al (2021) Critical review of the evolution of extracellular vesicles knowledge: From 1946 to today. Int J Mol Sci 22:6417

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mallia A, Gianazza E, Zoanni B et al (2020) Proteomics of extracellular vesicles: update on their composition, biological roles and potential use as diagnostic tools in atherosclerotic cardiovascular diseases. Diagnostics 10:843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mathilde M, Martin-Jaular L, Lavieu G, Théry C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21:9–17

    Article  Google Scholar 

  4. Herrmann IK, Wood MJA, Fuhrmann G (2021) Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol 16:748–759

    Article  CAS  PubMed  Google Scholar 

  5. Lu M, DiBernardo E, Parks E et al (2021) The role of extracellular vesicles in the pathogenesis and treatment of autoimmune disorders. Front Immunol. https://doi.org/10.3389/fimmu.2021.566299

  6. Hill AF (2019) Extracellular vesicles and neurodegenerative diseases. J Neurosci 39(47):9269–9273. https://doi.org/10.1523/JNEUROSCI.0147-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jansen F, Nickenig G, Werner N (2017) Extracellular vesicles in cardiovascular disease potential applications in diagnosis, prognosis, and epidemiology. Circulation Res 120:1649–1657. https://doi.org/10.1161/CIRCRESAHA.117.310752

    Article  CAS  PubMed  Google Scholar 

  8. Jabalee J, Towle R, Garnis C (2018) The role of extracellular vesicles in cancer: cargo, function, and therapeutic implications. Cell 7(8):93. https://doi.org/10.3390/cells7080093

    Article  CAS  Google Scholar 

  9. Rowland A, Ruanglertboon W, van Dyk M et al (2019) Plasma extracellular nanovesicle (exosome)-derived biomarkers for drug metabolism pathways: a novel approach to characterize variability in drug exposure. Br J Clin Pharmacol 85(1):216–226. https://doi.org/10.1111/bcp.13793

    Article  CAS  PubMed  Google Scholar 

  10. Useckaite Z, Rodrigues AD, Hopkins AM et al (2021) Role of extracellular vesicle-derived biomarkers in drug metabolism and disposition. Drug Metab Dispos 49:961–971

    Article  CAS  PubMed  Google Scholar 

  11. Pino L, Just SC, MacCoss MJ, Searle BC (2020) Acquiring and analyzing data independent acquisition proteomics experiments without spectrum libraries. Mol Cell Proteomics 19(7):1088–1103

    Article  PubMed  PubMed Central  Google Scholar 

  12. Doerr A (2015) DIA mass spectrometry. Nat Methods 12:35. https://doi.org/10.1038/nmeth.3234

    Article  CAS  Google Scholar 

  13. Searle BC, Swearingen KE, Barnes CA et al (2020) Generating high quality libraries for DIA MS with empirically corrected peptide predictions. Nat Commun 11:1548. https://doi.org/10.1038/s41467-020-15346-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iliuk A, Wu X, Li L et al (2020) Plasma-derived extracellular vesicle phosphoproteomics through chemical affinity purification. J Proteome Res 19:2563–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu X, Li L, Iliuk A, Tao WA (2018) Highly efficient phosphoproteome capture and analysis from urinary extracellular vesicles. J Proteome Res 17:3308–3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740

    Article  CAS  PubMed  Google Scholar 

  17. Choi M, Chang CY, Clough T et al (2014) MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30:2524–2526

    Article  CAS  PubMed  Google Scholar 

  18. Hadisurya M, Lee Z-C, Luo Z, et al (2023) Data-independent acquisition phosphoproteomics of urinary extracellular vesicles enables renal cell carcinoma grade differentiation. Mol Cell Proteomics 100536. https://doi.org/10.1016/j.mcpro.2023.100536

  19. Bekker-Jensen DB, Bernhardt OM, Hogrebe A, et al (2020) Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries. Nat Commun 11:1–12

    Google Scholar 

  20. Sinitcyn P, Hamzeiy H, Salinas Soto F, et al (2021) MaxDIA enables library-based and library-free data-independent acquisition proteomics. Nat Biotechnol 39:1563–1573

    Google Scholar 

  21. Bruderer R, Bernhardt OM, Gandhi T, et al (2015) Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 14:1400–1410

    Google Scholar 

Download references

Acknowledgments

This project has been funded by NIH grants 3RF1AG064250 to W.A.T. and by Purdue Institute for Cancer Research (PICR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Andy Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lihon, M.V., Hadisurya, M., Wu, X., Iliuk, A., Tao, W.A. (2023). Isolation and Identification of Plasma Extracellular Vesicles Protein Biomarkers. In: Kasid, U.N., Clarke, R. (eds) Cancer Systems and Integrative Biology. Methods in Molecular Biology, vol 2660. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3163-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3163-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3162-1

  • Online ISBN: 978-1-0716-3163-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics