Skip to main content

Receptor-Based Virtual Screening of Large Libraries in a Multi-Level In Silico Approach

  • Protocol
  • First Online:
Advanced Methods in Structural Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2652))

  • 1268 Accesses

Abstract

Structure-based drug design (SBDD) has become an alternative to high throughput screening (HTS) as it reduces experimental costs and time. It works like a funnel, filtering out compounds that do not show good affinity (or score) toward a particular target, with known 3D structure.

Here, we describe a protocol for structure-based drug design using a multi-level in silico approach, combining Molecular Docking, Virtual Screening, Molecular Dynamics Simulations and Free energy calculations to find new lead molecules for experimental testing, predict binding affinities and characterize binding modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tang Y, Zhu W, Chen K et al (2006) New technologies in computer-aided drug design: toward target identification and new chemical entity discovery. Drug Discov Today Technol 3(3):307–313

    Article  PubMed  PubMed Central  Google Scholar 

  2. Maia EHB, Assis LC, de Oliveira TA et al (2020) Structure-based virtual screening: from classical to artificial intelligence. Front Chem 8:343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Prieto-Martínez FD, López-López E, Juárez-Mercado KE et al (2019) Computational drug design methods—current and future perspectives. In: Roy K (ed) In silico drug design. Elsevier, Cambridge, Massachusetts

    Google Scholar 

  4. Li Q, Shah S (2017) Structure-based virtual screening. In: Wu C, Arighi C, Ross K (eds) Protein bioinformatics, Methods in molecular biology, vol 1558. Humana Press, New York

    Google Scholar 

  5. Sethi A, Joshi K, Sasikala K et al (2019) Molecular docking in modern drug discovery: principles and recent applications. In: Gaitonde V, Karmakar P, Trivedi A (eds) Drug discovery and development - new advances. IntechOpen, London

    Google Scholar 

  6. Bernstein FC, Koetzle TF, Williams GJB et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  Google Scholar 

  7. Varadi M, Anyango S, Deshpande M et al (2022) AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50(D1):D439–D444

    Article  CAS  PubMed  Google Scholar 

  8. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Szklarczyk D, Santos A, von Mering C et al (2016) STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res 44(D1):D380–D384

    Article  CAS  PubMed  Google Scholar 

  10. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  11. Schrödinger L, DeLano W (2020) PyMOL. Retrieved from http://www.pymol.org/pymol. Acessed 29 Aug 2022

  12. Gaulton A, Hersey A, Nowotka M et al (2017) The ChEMBL database in 2017. Nucleic Acids Res 45(D1):D945–D954

    Article  CAS  PubMed  Google Scholar 

  13. Gilson MK, Liu T, Baitaluk M et al (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44(D1):D1045–D1053

    Article  CAS  PubMed  Google Scholar 

  14. Mysinger MM, Carchia M, Irwin JJ et al (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sander T, Freyss J, von Korff M et al (2015) DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 55(2):460–473

    Article  CAS  PubMed  Google Scholar 

  16. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):42717

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58(9):4066–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Empereur-Mot C, Zagury JF, Montes M (2016) Screening explorer–an interactive tool for the analysis of screening results. J Chem Inf Model 56(12):2281–2286

    Article  CAS  PubMed  Google Scholar 

  19. O’Boyle NM, Banck M, James CA et al (2011) Open babel: an open chemical toolbox. J Cheminform 3(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  20. Olsson MHM, Søndergaard CR, Rostkowski M et al (2012) PROPKA3: consistent treatment of internal and surface residues in empirical p K a predictions. J Chem Theory Comput 7(2):525–537

    Article  Google Scholar 

  21. Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 40(W1):W537–W541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maier JA, Martinez C, Kasavajhala KW et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Frisch MJ, Trucks G, Schlegel HB et al (2016) Gaussian 09, revision A.02. Gaussian Inc, Wallingford

    Google Scholar 

  24. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  PubMed  Google Scholar 

  25. Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26(16):1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095

    Article  CAS  PubMed  Google Scholar 

  27. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discovery 10(5):449–461

    Article  CAS  Google Scholar 

  28. Miller BR, McGee TD, Swails JM et al (2021) MMPBSA.Py: an efficient program for end-state free energy calculations. J. Chem Theory Comput 8(9):3314–3321

    Article  Google Scholar 

  29. Lindstrom W, Morris G M, Weber C, et al (2008) Using AutoDock 4 for virtual screening. Available via http://wwwmodekejicn/wp-content/uploads/2019/08/UsingAutoDock4forVirtualScreening_v4pdf. Acessed 29 Aug 2022

  30. Trott O, Olson AJ (2009) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    Google Scholar 

  31. Jones G, Willett P, Glen RC et al (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748

    Article  CAS  PubMed  Google Scholar 

  32. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1750–1759

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio F. Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vieira, T.F., Sousa, S.F. (2023). Receptor-Based Virtual Screening of Large Libraries in a Multi-Level In Silico Approach. In: Sousa, Â., Passarinha, L. (eds) Advanced Methods in Structural Biology. Methods in Molecular Biology, vol 2652. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3147-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3147-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3146-1

  • Online ISBN: 978-1-0716-3147-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics